
© Oxford University Press 2018. All rights reserved. 1

Mobile OSs, Development

Environments, iOS and Android

Lesson 01

Mobile Operating System

© Oxford University Press 2018. All rights reserved. 2

Mobiles

• Specialized hardware

• Number of Apps

• GUIs, VUIs, communication interfaces for

service provider and Internet

• constraints of connectivity, CPU speed,

memory, battery life, display, and size of

input devices

© Oxford University Press 2018. All rights reserved. 3

Operating system (OS)

• The master control program

• Manages all software and hardware

resources

• Controls, allocates, frees, and modifies the

memory by increasing or decreasing it

• Enables the assignment of priorities for

requests to the system

© Oxford University Press 2018. All rights reserved. 4

Operating system (OS)

• Controls IO devices and network

• Manages files, disks, device drivers and

GUIs, apps, APIs and Hardware

abstraction layer

• Manages security

© Oxford University Press 2018. All rights reserved. 5

Operating system (OS)

• Includes utility programs, for example, file

manager, configuration of OS (memory

and resource allocation and enabling and

disabling the use of specific resources and

functions)

• Can be accompanied by a specific suite of

apps, for example, Internet Explorer and

MS Office

© Oxford University Press 2018. All rights reserved. 6

Mobile OS

• An OS specialised for which enables

running of tasks and threads of the apps,

taking into account mobile devices

constraints of hardware and network

• Enables a programmer to develop app

without considering the specifications,

drivers, and functionalities of the

hardware

Two special features of the

mobile OSs

1. OS packs a number of apps

2. OS has a hardware abstraction layer. The

layer enables running of the apps on

changes in mobile hardware at later

hardware versions of mobiles.

© Oxford University Press 2018. All rights reserved. 7

number of app software

components

• Micro secure digital (SD) card, touch

screen, camera, video camera, speech

recognition, video calls, voice recorder,

music player, and communication APIs for

micro Universal Serial Bus (USB), IR,

Bluetooth, Wi-Fi, global positioning system

(GPS) mobile navigation, NFC, enterprise,

and Cloud.

© Oxford University Press 2018. All rights reserved. 8

© Oxford University Press 2018. All rights reserved. 9

Mobile OS

• Enables an app to run by simply
abstracting the mobile system hardware

• Enables the programmer to abstract the
devices such that the app need not know
full details of the font and font size on
mobile device display

• app need not know how the message will
be displayed by the screen display
hardware

© Oxford University Press 2018. All rights reserved. 10

Mobile OS Examples

• Apple iOS 11

• Android─ released in 2008 by Google

[open-source code which powers mobile

operating system]

• Latest Andoid 8.0 Oreo

© Oxford University Press 2018. All rights reserved. 11

Example of hardware

abstraction by the OS

• Assume that keypad, screen display,

serial input, and serial output devices are

abstracted by an app as the input and

output devices with device numbers 1, 2,

3, and 4, respectively

© Oxford University Press 2018. All rights reserved. 12

Example of hardware

abstraction by the OS

• write (1, ‘Welcome to ABC Telecom’)

when a message Welcome to ABC

Telecom is sent in the output for display

• Program line code “write (‘Welcome to

ABC Telecom’)” when display device is

taken as default output device

© Oxford University Press 2018. All rights reserved. 13

Mobile OS

• Facilitates execution of software

components on diversified mobile device

hardware

• app need not be aware of the details of

the screen driver and memory at which

the CPU will send the message for

display

© Oxford University Press 2018. All rights reserved. 14

Driver

• Software component which enables the

use of a device, port, or network by

configuring (for open, close, connect, or

specifying a buffer size, mode, or control

word) and sends output or receives input

© Oxford University Press 2018. All rights reserved. 15

Mobile OS

• Provides interfaces for communication

between processes, threads, and ISRs at

the app and middleware layers

• Provides middleware for the system

hardware

• Provides management functions (such

as creation, activation, deletion,

suspension, and delay) for tasks

© Oxford University Press 2018. All rights reserved. 16

Mobile OS

• Provides memory management

• Enables running of processes

• Helps the processes in obtaining access

to system resources

© Oxford University Press 2018. All rights reserved. 17

Application

• Application tasks

• The OS provides the functions used for

scheduling the multiple tasks in a system

• Synchronization of the tasks by using

semaphores (tokens)

• A task may have multiple threads

© Oxford University Press 2018. All rights reserved. 18

Mobile OS

• Provides for synchronization of the

threads and their priority allocation

• Accomplishes real-time execution of the

tasks and threads of an app

© Oxford University Press 2018. All rights reserved. 19

App

• Uses the system resources, for example,

CPU, memory keypad, display unit,

modem interface, USB or serial port, and

battery

• Resources shared concurrently by the

apps running on the system

© Oxford University Press 2018. All rights reserved. 20

User app

• GUIs (graphic user interfaces)

• VUI (voice user interface) components

• Phone API

• Mobile OS provides configurable libraries

for the GUI in the device

• Provides for multi-channel and multi-

modal user interfaces

© Oxford University Press 2018. All rights reserved. 21

Process

• A program unit which runs when

scheduled to do so by OS and each state

of which is controlled by OS

• Can call a function (method) but cannot

call another process directly

© Oxford University Press 2018. All rights reserved. 22

States of a process

• Can be in any of the states—

1. created

2. active

3. running

4. suspended

5. pending for a specified time interval

© Oxford University Press 2018. All rights reserved. 23

Pending state of a process for a

specific communication from other

process

• Signal

• Semaphore

• Mailbox-message

• Queue-message

• Socket

© Oxford University Press 2018. All rights reserved. 24

Task

• A process of an app that runs according

to its schedule set by the OS

• Each state of which is controlled by OS

• Can be a real-time task which has time

constraints or maximum defined latency

within which it must run or finish

© Oxford University Press 2018. All rights reserved. 25

Thread

• An process or a process sub-unit (when

a process or task has multiple threads)

• Runs as scheduled by the OS

• Each state controlled by OS

• Runs as a light-weight process

© Oxford University Press 2018. All rights reserved. 26

Light-weight

• Does not depend on certain system

resources, for example, memory

management unit (MMU), GUI functions

provided by the OS, or the functions

which need running of other processes

or threads for their implementation

© Oxford University Press 2018. All rights reserved. 27

Interrupt service routine (ISR)

• A program unit (function, method, or

subroutine) which runs when a hardware

or software event occurs

• Running of which can be masked and

can be prioritized by assigning a priority

• Higher priority than any other process or

task or thread

© Oxford University Press 2018. All rights reserved. 28

Hardware events for interrupts

• Time-out of a timer (clock tick)

• Division by zero

• Overflow

• Underflow detection by hardware during

computation

© Oxford University Press 2018. All rights reserved. 29

Hardware events for interrupts

• Finishing of DMA (direct memory access

by a peripheral) transfer

• Data abort

• External FIQ (fast interrupt request

through a pin input)

• External IRQ (interrupt request through a

pin input)

• A memory buffer becoming full

© Oxford University Press 2018. All rights reserved. 30

Hardware events for interrupts

• Port, transmitter, receiver, or device

buffer─ becoming half filled, buffer with

at least one memory address filled, and

buffer becoming empty

• Buffer─ associated with the memory

addresses for the LCD, printer, serial or

USB port, keypad, or modem

© Oxford University Press 2018. All rights reserved. 31

Software related events for

interrupts

• Exception─ software instruction for

interrupt on detection of a certain

condition during computations or error

while logging in

• Illegal operation code provided to CPU

© Oxford University Press 2018. All rights reserved. 32

Interrupt service thread (IST)

• A special type of ISR or ISR unit

(function, method, or subroutine) which

initiates and runs on an event or

message from an high priority ISR

• ISTs can be prioritized by assigning a

priority

• The type of IST depends on the specific

OS

© Oxford University Press 2018. All rights reserved. 33

App as event-driven ISTs (i, j, …) and

threads (p, q, …)

© Oxford University Press 2018. All rights reserved. 34

Windows IST

• One which is placed in a priority queue

so that the ISTs execute turn by turn—

FIFO (first-in first-out)

• An IST is initiated and put in the FIFO

according to ISR priority after the

execution of an ISR starts on an event

and the ISR puts a message or

semaphore or signal for the IST

© Oxford University Press 2018. All rights reserved. 35

ISR and IST

• The ISR, therefore, has an event-initiated

short piece of code, which runs only the

critical part of the code and rest of the

code runs at the IST initiated by it

• The IST priority─ lower than the ISR but

higher than the processes or tasks or

threads

© Oxford University Press 2018. All rights reserved. 36

Page

• A unit of memory which can load from a

program stored in a hard drive or from

any other storage device to the program

memory, RAM, before the execution of a

program

• A contiguous memory address block of 4

kB (in x86 processors), 2 kB, or 1 kB

© Oxford University Press 2018. All rights reserved. 37

Page table

• For address mapping

• Provides the mapping of fragmented

physical memory pages with the pages

of the virtual addresses which are the

memory addresses

© Oxford University Press 2018. All rights reserved. 38

Page table

• Pages of memory are spread over the

memory-address space leading to

fragmentation of codes and data in

physical memory space

© Oxford University Press 2018. All rights reserved. 39

MMU

• Creates and maintains the page table and

hence performs address mapping and

translation

© Oxford University Press 2018. All rights reserved. 40

MMU

• Program during execution first translates

the accessed address (virtual address)

into a physical address using the page

table at the MMU and then accesses the

physical address and fetches the code or

data

© Oxford University Press 2018. All rights reserved. 41

Priority inversion

• Takes place when a process or thread

which is to provide a waiting object to a

higher priority process or thread gets

preempted by a middle priority process

or thread and thus the middle priority

process or thread starts running on

obtaining the object for which it was

waiting

© Oxford University Press 2018. All rights reserved. 42

Priority inheritence

• Process or thread which is to provide a

waiting object to a higher priority process

or thread, gets the priority of that

process or thread

• Waiting object─ signal, semaphore,

queue, mailbox message, or bytes from

a pipe

© Oxford University Press 2018. All rights reserved. 43

Pipe

• A virtual device which sends the bytes

from a thread to another thread

© Oxford University Press 2018. All rights reserved. 44

Example of Linux OS – Mobile

• An open source OS

• Enables the user to customize their

device to suit their specific needs

• Provides ease to suit different sorts of

hardware and software applications

© Oxford University Press 2018. All rights reserved. 45

Linux

• Embedded Linux Consortium (ELC)
standards for Linux for designing user
interfaces, managing power consumption
in devices, and real-time operation

• Also considered to be more secure than
most other operating systems

• Several international mobile phone
manufacturers use Linux for their OS
requirements

© Oxford University Press 2018. All rights reserved. 46

Summary

• OS─ a master control program

• Manages all software and hardware

resources

• Controls, allocates, frees, and modifies

the memory by increasing or decreasing

it

• Controls processes, tasks, threads, ISRs

and ISTs

© Oxford University Press 2018. All rights reserved. 47

Summary

• Mobile OS─ An OS which enables

running of application tasks taking into

account mobile system constraints of

hardware and network

• Enables a programmer to develop app

without considering the specifications,

drivers, and functionalities of the

hardware of the system

…

© Oxford University Press 2018. All rights reserved. 48

… Summary

• Many Apps

• Device drivers

• GUIs

• VUIs

• Phone APIs

© Oxford University Press 2018. All rights reserved. 49

… Summary

• Manages files, disks, and security,
provides device drivers and GUIs for
desktop or mobile computer, other
functions, and apps

• MMU

• Priority inversion and inheritence

• Linux─ An open source OS

• Enables the user to customize their
device to suit their specific needs

© Oxford University Press 2018. All rights reserved. 50

End of Lesson 01

Mobile Operating System

