#### **MOBILE TRANSPORT LAYER**

### Lesson 03 TCP Data flow control and Congestion control

© Oxford University Press 2007. All rights reserved.

# **TCP DATA FLOW CONTROL**

- Octets in a segment transmit as data streams which are transmitted after packetizing
- A few packets of a data stream may reach the other end with an error, may be lost, or may not reach in the expected time
- They need retransmission starting from the octet succeeding the last successfully received one. A controlled data flow prevents need of large number of retransmissions

# WINDOW SIZE ADJUSTMENT (TCP TUNING) METHOD

- Adjusted and throughput depends on RTT (round trip time) interval for the acknowledgement
- The transmitter transmits all bytes received up to a sequence number specified by w at the window size field of the other end

# WINDOW SIZE ADJUSTMENT (TCP TUNING) METHOD

 Transmit from *i* to *i* + *w* in case the next sequence number (in the acknowledgement field from receiver) to be sent from transmitter is *i*

### TIMEOUT

- At the transmitter sets equal to the RTT for acknowledgement
- If there is no acknowledgment in the timeout period
- Then the bytes sent using the window are considered as lost and are retransmitted

### **CUMULATIVE ACKNOWLEDGEMENT**

 Receiver acknowledges all bytes received up to a sequence number defined in the acknowledgement field

### **CUMULATIVE ACKNOWLEDGEMENT**

- Cumulative acknowledgement from the TCP<sub>B</sub> end called partial acknowledgement (PACK) if the acknowledgement field shows a lesser value than expected after transmission of all the bytes from the TCP<sub>A</sub> end
- PACK— shows the lost packets or data during transmission to the  $TCP_B$  end

## REVERSE PACKET ACKNOWLEDGEMENT

• Reverse packet from the receiver piggybacks the acknowledgement

# DUPLICATE ACKNOWLEDGEMENT (DACK)

- One of the packets of a segment may reach after a delay in comparison to the packet succeeding it
- Acknowledgement from the receiver is duplicated by retransmission of an earlier acknowledgement without delay
- DACK thus shows recovery of lost packets or data received after a delay at the TCP<sub>B</sub> end

### **DELAYED ACKNOWLEDGEMENT**

- Acknowledgement from the receiver is delayed if the receiver responds by including, after the TCP header, a large number of octets of the receiver-end segment
- Due to packetization time at the receiver network layer and the packets tracking different paths and hops to the transmitter

### **DELAYED ACKNOWLEDGEMENT**

- Receiver has started receiving another transmitted data stream from the next sequence number at the transmitter
- Receiver now assigned a dual role at the same time
- Delay at the transmitter can be set at 100 ms to 250 ms in order to reduce the number of delayed acknowledgements

## ADJUSTING THE WINDOW-SIZE FIELD METHOD

- Window-size field is varied for congestion control during data flow
- Window size, w, a 16-bit field specifies the number of bytes the receiver (TCP<sub>A</sub> or TCP<sub>B</sub>) is ready to receive from the sender (TCP<sub>B</sub> or TCP<sub>A</sub>, respectively
- w set to maximum 2<sup>16</sup> bytes

## **TCP TUNING**

- Method of specifying window size
- The bytes (from the other end) start from the acknowledgement field value *i* and are transmitted up to the *i* + *w* value of the sequence number in a TCP segment
- Refer Examples 6.1 and 6.2 in the text

### WINDOW SCALING METHOD

- During high speed data transfer, the window scaling method
- The TCP tuning method scales up the widow size to 2<sup>30</sup> bytes in case of highspeed networks

### WINDOW SCALING METHOD

- Number of bits, which left shifts the bits w at the window-size field, is set during a three way handshake session SYN\_SENT, SYN\_RECEIVED and ESTABLISHED
- A left shift of 1 multiplies w by 2, a left shift of 2 multiplies w by 4, and so on

### WINDOW SCALING METHOD

- Number of shifts can be between 0 and 14 and the window size = 2<sup>30 + s</sup>, where s is the number of shifts
- Window scaling factor,  $s_w = 2^s$

## **SLIDING WINDOW METHOD**

- A window specified from a sequence number to another sequence number
- $S_{A0}$  and  $S_{A1}$  are the two sequence numbers which define the lower and upper boundaries of the window.  $S_{A0} - S_{A1} = S_W$ (sliding window size)

## **SLIDING WINDOW METHOD**

 TCP<sub>A</sub> can send only S<sub>W</sub> bytes before it must wait for an acknowledgment and a window update from the receiving end TCP<sub>B</sub>



- TCP<sub>A</sub> transmit as per its present sliding window setting
- The setting such that the TCP<sub>A</sub> data stream is transmitted between S<sub>A0</sub> and S<sub>A1</sub> before an acknowledgement is expected from the receiving end

#### EXAMPLE

- TCP<sub>A</sub> sets the sliding window to the next set of sequence numbers  $S_{A1} S_{A2}$ .
- When the receiver's acknowledgement is not received in a specified interval, then the window slides back to the original and the sequences between  $S_{A0}$  and  $S_{A1}$  are retransmitted

#### EXAMPLE

- When the receiver's acknowledgement is received in the specified interval and it equals  $S'_{A0}$ , then the window slides back and sequences between  $S'_{A0}$  and  $S'_{A0}$  +  $S_W$  is retransmitted
- Sliding window size, S<sub>W</sub>, also defines an acknowledgement delay period

## RTT

- Assume that one sequence is transmitted and acknowledged in time  $RTT_0$ , then the next acknowledgement is expected after  $RTT_0 \times S_W$
- $S_W$  specified in the  $\mathsf{TCP}_\mathsf{A}$  data stream at the window-size field
- TCP<sub>B</sub> receives the stream and sends the acknowledgement number field after setting the acknowledging time interval as per the  $S_W$  value received from TCP<sub>A</sub>

- A TCP data stream receiver sets a window
- The data from  $TCP_A$  (transmitter) to be sent from sequence number  $S_0$  and  $S_4$
- Let us assume that the data from a transmitter is received and sent to an application or a service access point (SAP) up to sequence number S<sub>0</sub>

- Assume that at an instant, the situation is as follows—transmitted  $TCP_A$  octets are received and acknowledged by  $TCP_B$  receiver up to the sequence number  $S_1$
- But data is still being sent to the receiver SAP (application layer)
- TCP<sub>A</sub> octets transmit from sequence number S1 + 1

 Let us now assume that at the next instant, the situation is as follows—the data from TCP<sub>A</sub> is received at TCP<sub>B</sub> up to sequence number S<sub>2</sub> but has not yet been acknowledged and that it is yet to be sent to SAP

- TCP<sub>A</sub> octets retransmit from sequence number S1 + 1 after the timeout
- The data from the transmitter can be received up to a maximum of sequence number  $S_3$  when the window of the receiver extends from  $S_1$  to  $S_3$  and the window-size field bits in the TCP<sub>A</sub> data stream header equal  $(S_3 - S_1) \div s_w$ , and  $s_w$  is 1

- Congestion network window size (cnwd) =  $(S_3 S_1)$  and the window is for  $(S_3 S_1)$  octets and when  $s_w = 2$  the window is for  $[(S_3 S_1) \div 2]$  octets
- The window scaling factor is set at the transmitter
- By adjusting s<sub>w</sub> the congestion can be controlled

## METHODS FOR CONGESTION CONTROL IN CONVENTIONAL TCP

- Slow start and congestion avoidance
- Fast recovery (in place of slow start) after packet loss

## THE PROBLEMS FACED WHILE EMPLOYING THE CONVENTIONAL TCP ON A MOBILE NETWORK

(a) Slow start method employed in the conventional TCP presumes that a packet is lost due to congestion, not due to any other reason

 Mobile network— The transmission quality problem more likely reason for packet loss

## THE PROBLEMS FACED WHILE EMPLOYING THE CONVENTIONAL TCP ON A MOBILE NETWORK

(b) Mobile network— BERs high, which leads to high transmission repetition rates and, therefore, the higher window slide-back rates (Transmission repeats due to windows slide back in TCP)

## THE PROBLEMS FACED WHILE EMPLOYING THE CONVENTIONAL TCP ON A MOBILE NETWORK

(c) The duplicate acknowledgements (DACKs)— lead to reduced window sizes

# METHODS FOR WIRELESS AND MOBILE NETWORKS

- Split TCP— TCP splits into two layers
- The upper layer to take care of requirements in mobile networks and send the data streams to the conventional TCP layer
- Four methods using split TCP— indirect TCP, selective repeat TCP, mobile-end Transport, and mobile TCP

# METHODS FOR WIRELESS AND MOBILE NETWORKS

- Fast retransmit and fast recovery
- Selective acknowledgement
- Explicit congestion notification

## I CP-AWARE LINK-LAYER METHODS FOR WIRELESS AND MOBILE NETWORKS

- The three TCP-aware link layer protocols

   snooping TCP, WTCP, and delayed
   duplicate acknowledgement protocol
- Snooping— secretly looking into or examining something
- The data-link layer snoops into the TCP layer data

# LINK-LAYER (L2) MODIFICATION METHODS FOR WIRELESS AND MOBILE NETWORKS

- Data-link layer in the mobile nodes (MNs) FEC and ARQ methods (in place of methods like L4 TCP window sliding method) for error control
- FEC: FEC code lengths and frame sizes can be varied depending on the bit error rate (BER)

# LINK-LAYER (L2) MODIFICATION METHODS FOR WIRELESS AND MOBILE NETWORKS

- ARQ (automatic repeat request): When errors are detected, a repeat request is generated
- The throughput is not affected in case there are no errors
- However, in case of errors, the throughput, round trip time (RTT), and congestion in the network affected due to repeated retransmission of data streams

# LINK-LAYER (L2) MODIFICATION METHODS FOR WIRELESS AND MOBILE NETWORKS

- When using adaptive techniques, retransmission can be limited and can be varied depending on the bit error rate (BER)
- For example, in voice communication, a certain BER is tolerable
- Hence, retransmission can be skipped



- Data flow
- Window size adjustment
- Cumulative partial acknowledgement
- Reverse packet acknowledgement
- Delayed acknowledgement
- Adjusting window size field
- window scaling method
- Sliding window method

#### ...SUMMARY

- Slow start and slow-start fast-recovery
- Wireless and mobile network methods
- Split TCP methods for congestion control in wireless and mobile networks
- TCP aware link layer methods
- Link layer modification methods
- Explicit notification methods

### End of Lesson 03 TCP Data flow control and Congestion control

© Oxford University Press 2007. All rights reserved.