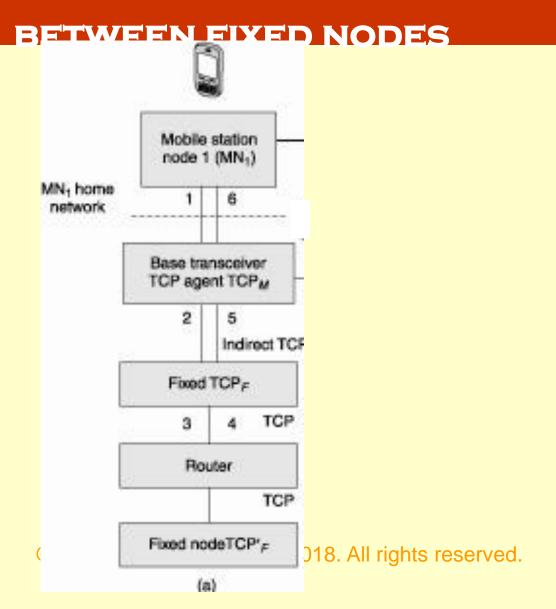
MOBILE TRANSPORT LAYER


Lesson 02

Indirect TCP, selective repeat and mobile-end transport protocols

INDIRECT TCP-SPLITTING OF TCP LAYER INTO TWO TCP SUB-LAYERS

- TCP_M connection— between the mobile node (MN) and the base transceiver (BTS) and between the BTS and a fixed node (FN)
- 2. TCP connection— Fixed nodes (FN)
- The BTS has an access point at an agent TCP_M for TCP connection
- TCP_M sends and receives the packets to and from the MN through the BTS

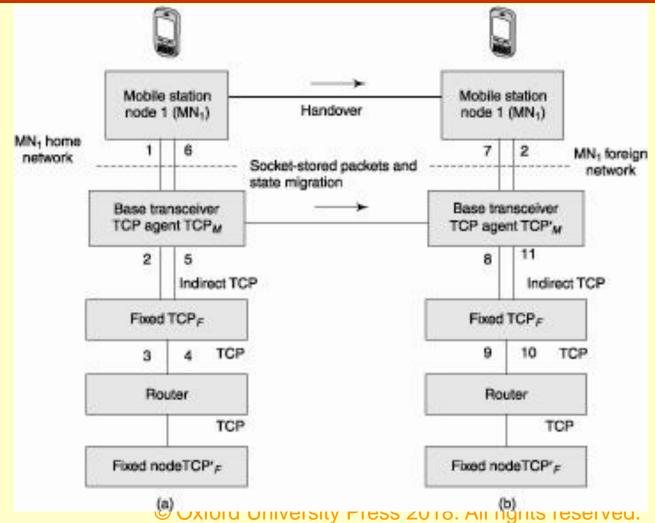
INDIRECT TCP SUB-LAYER BETWEEN BTS AND FIXED NODE AND CONVENTIONAL TCP

3

INDIRECT TCP FUNCTIONS

- 1. TCP_M sends and receives the packets to and from the TCP_F layer at the fixed node
- The transfer mechanism simple as there only one hop
- Retransmission delay between TCP_M to TCP_F very small, unlike that between the fixed nodes

TCP_M**FUNCTIONING**


1. The data streams received from the service access point (application) at the MN and buffered at TCP_M

INDIRECT TCP FUNCTIONS

2. TCP_F layer at the fixed node sends and receives the packets to and from another fixed node TCP'_F

 TCP_F to TCP'_F transfer mechanism using multiple hops through the routers

HANDOVER MECHANISM IN CASE OF INDIRECT TCP

HANDOVER MECHANISM WHEN THE MN VISITS A FOREIGN NETWORK

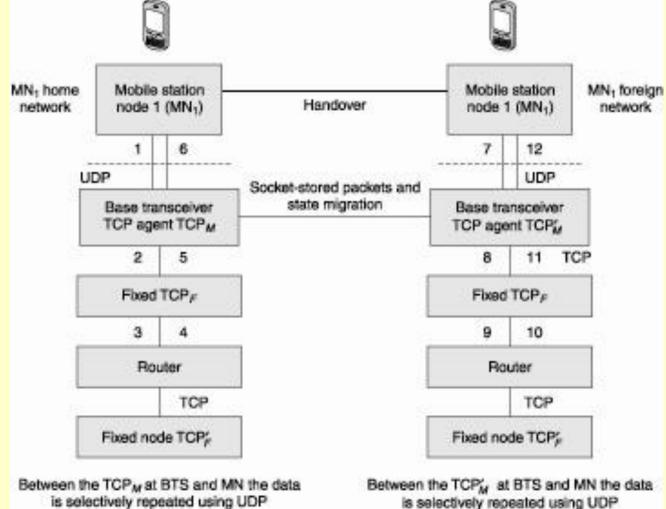
- Packets for transmission buffered at TCP_M are transferred to TCP'_M
- On handover, the socket (port and IP address) and its present state migrate from TCP_M to TCP'_M
- The transfer from TCP_M to TCP'_M latency period

ADVANTAGE OF INDIRECT TCP

- Mobile part of the network isolated from the conventional
- No change required in the existing TCP network

DISADVANTAGES OF INDIRECT TCP

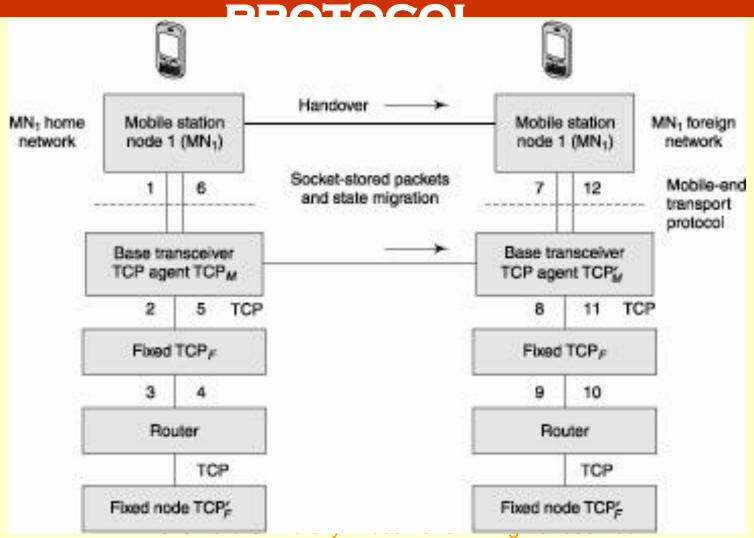
- High latency period during handover of packets
- Possible loss of data at the base
- Deviation from the end-to-end connection feature of conventional TCP, which guarantees reliable packet delivery
- Deviation— an acknowledgement to a sender may be lost during handover latency


SELECTIVE REPEAT PROTOCOL

- Modification of the indirect TCP
- Between TCP_M at the BTS and MN selective repetition of the data using UDP
- Between TCP_M at one end and TCP'_F and TCP'_M at the other end, the data stream transferred, as in case of conventional fixed-end TCP

USE OF UDP IN SELECTIVE REPEAT PROTOCOL

- UDP— a connectionless protocol
- Selective repeat protocol does not guarantee the in-order delivery between the BTS and the MN, unlike TCP


MODIFICATION IN INDIRECT TCP IN SELECTIVE REPEAT PROTOCOL USING THE UDP BETWEEN BTS AND MN

MOBILE-END TRANSPORT PROTOCOL-MODIFICATION OF INDIRECT TCP

- Guarantees the in-order delivery between the BTS and the MN, like TCP
- Data transferred between TCP_M at the BTS and the MN by using the mobile-end transport protocol
- Data stream transferred between TCP_M at one end and TCP_F and TCP_M at the other end, the, as in case of conventional fixed end TCP

MODIFICATION IN INDIRECT TCP BY USING MOBILE-END TRANSPORT

SUMMARY

- Split TCP protocol
- TCP_M sends and receives the packets to and from the TCP_F layer at the fixed node and between fixed points on conventional network by TCP
- Selective repeat Protocol use (i) UDP between MN and BTS, (ii) TCP_M between BTS and fixed node and (iii) TCP between fixed node

... SUMMARY

 A TCP agent in Mobile-end transport protocol in place of TCP_M or UDP between MN and BTS

End of Lesson 02

Indirect TCP, selective repeat and mobile-end transport protocols