MOBILE IP NETWORK LAYER

Lesson 07

Route Optimisation and Mobility Binding

CN (MN_K) CORRESPONDING WITH VISITING MN_L

© Oxford University Press 2018. All rights reserved.

MOBILE IP NETWORK EMPLOYING HOME AND FOREIGN AGENTS FA_k and FA_j

 Packet delivers to and from the MN_k at a foreign network with FA_k and MN1 at the foreign network with FA_i

- Assume that MN_I visiting a foreign network which happens to be the home network of CN2
- CN2 is very close to CN

PACKETS MAKE A TRIANGULAR TRIP TO REACH FROM CN_{κ} TO MN_{L}

TRIANGULAR ROUTE

- Triangular route without mobility binding between COA_i and CN_k
- Also possible that FAk and FAj are identical

OPTIMIZATION OF ROUTE FOR THE TRIANGULAR ROUTING EXAMPLE

 Can be made in case the MN_I opts to make its mobility known

ROUTE OPTIMIZATION AND PATH 1, 2, 3, 4, 5AFTER MOBILITY BINDING OF MN1 AT COA,

MOBILITY BINDING STEPS IN THE CALLING NETWORK

- 1. CN_k (fixed) or MN_k (mobile) network sends a mobility-binding request to HA_l
- 2. HA_I detects whether MN_I (for which binding request is made) has blocked external mobility binding requests
- If not, then HA_I sends the update for the mobility-binding message to the CN_k network
- External oxford driversity Press to include the

MOBILITY BINDING STEPS IN THE CALLING NETWORK

 Mobility binding message has the IP address of MN1 and the present COA (COA_j) of MN_l when on visit to a foreign network and registered with FA_j

MOBILITY BINDING STEPS IN THE CALLING NETWORK

4. CNk issues an acknowledgement to HA₁ on receiving the binding message.

5. CN2 network decapsulates the IP packet (this decapsulation would have been performed by FA_j through HA1 if MN1 had blocked external binding requests) and sends and

WARNING SENT TO HAL OF MNL

 Serves a purpose— HA_I sending the binding update to CN_k when MN_I moves to visit another foreign network or when it returns to the home network

WARNING FOR BINDING

 A message to the effect that the new IP addresses of MN_I and CN₂ will decapsulate the encapsulated IP packets (from the moment that the warning is aired) instead of FA_j

SMOOTH HANDOVER IN MOBILE IP PROTOCOL METHOD OF OPTIMIZATION

- FA_j sends a binding warning to CN_k when MN1 deregisters with it
- Lets CN_k initiate another binding request to HA_l of MN_l
- CN_k gets the new binding and COA_m address from HA_l in the binding cache

TUNNELLING AND FORWARDING OF IP PACKETS BY ENCAPSULATION

• Paths 4 to 5

DATA FRAME IN A CHANNEL

SUMMARY

- Triangular routing when MN_I visiting a foreign network happens to be the home network of CN2 which is close to CN
- Route optimization by Mobility binding protocol

End of Lesson 07

Route Optimisation and Mobility Binding