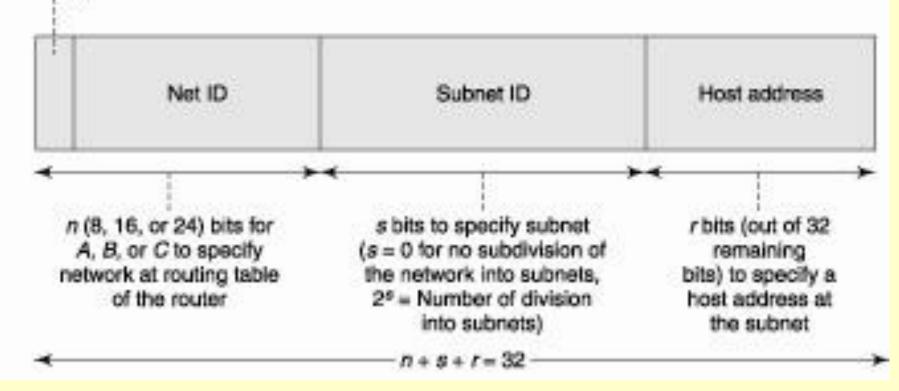
#### **MOBILE IP NETWORK LAYER**

## Lesson 03

# Subnet, Unicast, Multicast, UDP and ICMP

# CONCEPT OF SUBNETS ON THE INTERNET


 A subnet— a sub-network using standard specifications and protocols when connecting to the Internet on one end and to the host on the other end

SUBNET

- Each router has a 32-bit IP address
- A router can connect to a maximum of 2<sup>7</sup>, 2<sup>14</sup>, or 2<sup>21</sup> other routers depending upon the subnet in which class (A or B or C) that router belongs

#### **AN IP ADDRESS AND ITS STRUCTURE**

1, 2, or 3 bits to specify class A, B, or C



## MSBS FOR CLASSES A, B AND C

- Identify A, B, and C type of networks
- Msbs = 0, 10, and 110 (1 or 2 or 3 bits before netID)

# NETID BITS FOR CLASSES A, B AND C AFTER MSBS

- 7 or 14 or 24
- Specify network ID among 2<sup>7</sup>, 2<sup>14</sup> or 2<sup>21</sup> class A or B or C networks

## SUBNET ID-S BITS AND HOST ADDRESS-R BITS

# s + r = 24 or 16 or 8 for A or B or C class subnets

## SUBNET ROUTER FOR MULTICASTING-CLASS DNETWORK

 Uses four msbs (1110) for network identification and 32 – 4 = 28 bits specify the address of the multicasting subnet

#### SUBNET ROUTER- CLASS ENETWORK

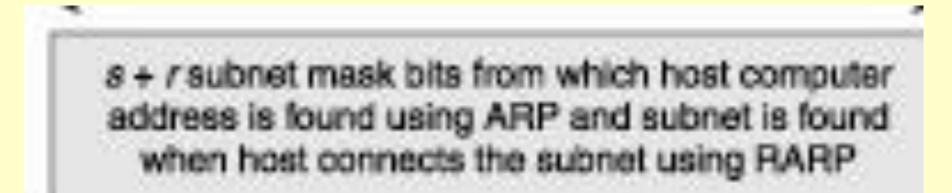
- Five msbs (11110) used for network identification
- Reserved for future applications

#### **SUBNET MASK**

- Unmasks the *r*-bits (*nd*4 when *r* = 8 and finds *nd*4 of the computer)
- Finds the addressed host's IP address (nd1.nd2.nd3.nd4)

# ADDRESS RESOLUTION PROTOCOL (ARP)

- An Ethernet LAN computer has a 48bit MAC (medium access control) address
- ARP maps *r*-bits to the 48-bit MAC address


# ADDRESS RESOLUTION PROTOCOL (ARP)

 ARP— finds the destination computer MAC address on the LAN and forwards the packet to the destined computer

#### **ARP CACHE**

 An ARP cache— stores the MAC address to enable ARP to translate the host IP address into the MAC address





# **REVERSE ADDRESS RESOLUTION PROTOCOL (RARP)**

- From the source computer, the packet is transmitted to a source router, using RARP (reverse ARP) and subnet mask
- The subnet mask masks the extra bits (nd4 when r = 8)

## **RARP CACHE**

- An RARP cache— saves the IP address and the computer address
- Enables the RARP to reverse translate the MAC address into the IP address

# **REVERSE ADDRESS RESOLUTION PROTOCOL (RARP)**

 The packet forwards to the source router on the subnet with an *n*-bit source router net ID (for example, (*ns*1. *ns*2. *ns*3) on class *C*)

## **POINT TO POINT UNICAST TRANSFER**

 Message or packet transmits to the destined IP address only

#### **MULTICAST TRANSFER**

- Message or packet transmits to a group of IP addresses
- The IP protocol specifies the use of a class D subnet for multicasting

## MULTICAST IP ADDRESS BITS

- Multicasting subnet four msbs (1110) in the net ID part of the IP address for defining subnet as *multicast* network
- 32 4 = 28 bits specify the address for the multicasting net ID and the subnet and host (s and r) addresses



- The address (224.0.0.1) multicasts to all hosts in the links of a router
- (ns1 = 224 in decimal system = 11100000 in binary system)

### **MULTICAST TREE**

- A multicasting source (root) multicasting to select multicast nodes (subnets) at level 1
- Each level 1 node, then, transmits to multicast nodes (subnets) at level 2 and so on

#### **MULTICAST TREE**

- A hierarchy of nodes present in a multicast tree
- Multicast tree nodes at one level can transmit to multicast nodes at another level simultaneously, via multiple paths
- Time taken in multicasting a message greatly reduced

#### **MULTICASTING APPLICATIONS**

- Flooding a UDP (user datagram protocol) datagram on the network
- Sending information along many paths
- Required for advertisement

#### **SPANNING TREE PROTOCOL**

 Protocol to block nodes, which have already received the relevant information during flooding



- Message or packet transmits to all the IP addresses which are set for listening
- The IP protocol specifies an address for broadcasting
- All 32 bits— 1s (255 . 255 . 255 . 255)
- Used when broadcasting to all hosts and links of a router

#### DATAGRAM

- Provides independent information
- A datagram is stateless
- Not necessarily a sequential successor of a previous one or a predecessor of the next
- Data sent using a connectionless protocol

#### **CONNECTIONLESS PROTOCOL**

- No session establishment before the data transfer begins
- Example—, on phones there are hotlines where one can just speak without the usual dialling and waiting business

# **UDP AND DATAGRAM**

- UDP (User datagram protocol) for sending datagram using a connectionless protocol
- Maximum of 2<sup>16</sup> bytes, transmitted as sequences of words, each of 32-bits (4 bytes)

## **UDP 6 FIELDS AT HEADER**

- Source port number
- Destination port number
- Source IP address
- Destination IP address
- Length of data
- Checksum bytes for the header (to check erroneous receipt of header)

# INTERNET CONTROL MESSAGE PROTOCOL

- Another connectionless protocol
- A part of the IP network protocol suite
- ICMP uses a datagram

## **ICMP USES**

- Sending the messages for querying to find information
- Reporting errors
- Making route address advertisement
- Router seeking (soliciting) messages to get the IP addresses of the linked subnets

## **ICMP HEADER**

- First word of 32-bits to specify a byte for type of message, a byte for the code, and a two-byte checksum
- Second word of 32-bits, which specifies the number of addresses for advertising along with the address field size and the lifetime of message validity

## **ICMP HEADER REMAINING WORDS**

- A set of pairs of words
- Router address and preference
- The router of higher preference gets the messages earlier than the others
- The pairs arranged in sequence for level 1, level 2, and so on in a tree

## **ICMP HEADER REMAINING WORDS**

- Options— extended words in headers
- First byte = 16 means that options being used
- One example of option use— the mobile IP protocol extension when an agent advertises

#### **SUMMARY**

- Class A or B or C
- Subnet msbs, netID, subnetID and hostID bits
- ARP to use subnet mask to find host MAC from IP address
- RARP to use subnet mask to find IP from MAC address

#### ... SUMMARY

- Unicast, multicast and broadcast
- Multicasting for advertising
- Spanning tree protocol
- Datagram stateless data
- UDP connectionless protocol for datagram
- ICMP for sending the messages for 37

#### ... SUMMARY

- UDP connectionless protocol for datagram
- ICMP for sending the messages for querying, reporting errors, route address advertisement and solicitation

# End of Lesson 03 Subnet, Unicast, Multicast, UDP and ICMP