MOBILE IP NETWORK LAYER

Lesson 02 IP Protocol, IP Packets and TCP/IP Suite

© Oxford University Press 2018. All rights reserved.

INTERNET PROTOCOL- IP

- The basic protocol at L3 which is used for transmission over the Internet
- Designed for use by networks which employ packet-switched data communication

IP

- Provisions the transmission of data packets
- Each packet treated independently
- Every packet must contain complete destination address information

HEADER FIELDS

- Carry information which is used by the successive layers at the transmitting end and by the corresponding layers at the receiving end
- At a layer at the receiving end, data received from the lower layer can be suitably assembled (for example, packetized IP layer data from L4 is assembled at L3)

TCP/IP PROTOCOL SUITE

- A suite of protocols for networking for the Internet
- Transmission control protocol (TCP) or User Datagram protocol (UDP) at L4
- The Internet protocol (IP) at L3
- The suite contains many protocols at L7 or L2 or L1
- L5 and L6 not present

© Oxford University Press 2018. All rights reserved.

TCP/IP PROTOCOL SUITE

- Originally designed to have four layers but evolved to a five-layer format
- The functions of *L*5 (session layer) incorporated into *L*4 (transport layer)
- L6 (presentation layer) incorporated into L7 (application layer) in TCP/IP
- The five layers— L7, L4, L3, L2, and L1

IP AT L3, FUNCTIONS- NETWORK LAYER

- Facilitate transmission of data from one system with a common address for the ports (like service access points in a mobile system) to another with a common address for the ports
- The address— called the IP address
- Connections to the Internet employ the IP protocol

IP

- Provides the connection to the router for transmission
- A communication between two addresses on a physical network carried out through routers

IP PROTOCOL HEADER

• Encapsulates data from the upper layers, for example, the *L*3 header encapsulates the *L*4 data after formatting it into packets

PACKET FORMATION IN IP

- Packets of maximum size = 2¹⁶ bytes (2¹⁴ words) after the data from *L*4 (transport layer) divided
- A packet-switched network can be used for transmission
- Hopping of data packets different routes to reach a destination

PACKET FORMATION IN IP

 More packets can be sent simultaneously through the network unlike in a circuitswitched network, where only one data frame can be transmitted at an instant (for example, in GSM or HSCSD

AN IP PACKET TRANSMITTED IN FRAGMENTS

 MTU (maximum transferable units per effort) may be much less than 2¹⁶ bytes in a source-destination path or sub-path in the network

HEADER, SOURCE, AND DESTINATION IP ADDRESSING

- IP specifies certain header fields— a field is a set of bits placed in a word for a specific action, condition, or purpose
- Encoding data from the transport layer at the transmitter
- Decoding the data received from the datalink layer before passing it to the transport layer at the receiver

HEADER FIELDS— First word

- 32-bit word
- Specify IP version (IPv4 or IPv6 for Internet or broadband Internet)
- Length of the IP header
- Precedence of the IP packet
- Total packet length

IPv4 Header Fields— Second word

- 32-bit word
- ID for the packet
- Flags
- Fragment offset for the fragments of same ID

IPv4 Header Fields- Third word

- 32-bit word
- Time-to-live (not in seconds but in number of attempts to hop before expiry of packets in the network)
- Type of protocol
- Checksum of the header (for finding transmission errors, if any)

IPv4 Header Fields— Fourth word

- 32-bit word
- IP address of the source (as per four decimal numbers, each separated by dots and each lesser than 256)
- IPv4 IP protocol version 4 address of 32bit each in source and destination in IPv4

IPv4 Header Fields— Fifth word

- 32-bit word
- IP address of the destination (four decimal numbers each separated by dots and each lesser than 256)

IP ADDRESS— Example

- Assume that the source IP address for routing is (*ns*1 . *ns*2 . *ns*3 . *ns*4)
- Destination IP address (nd1 . nd2. nd3 . nd4)

PACKET TRANSMISSION

- From the source IP address to the destination by hopping among the various routers on a path
- Paths can be different for different packets of same source
- Path for the routing of a packet depends on the paths and sub-paths which are available in the network at a given instant

ROUTING BETWEEN TWO IP Addresses

- Router receives a packet from a source or a previous stage router
- Gets the destination address from the IP header
- Forwards the packet to the next router or the destination router for that destination address
- Each router maintains a table for selecting the path in the route for the packet

© Oxford University Press 2018. All rights reserved.

ROUTING TABLE

- Maintained and regularly updated by the router
- Has a large number of rows depending upon the maximum number of entries possible in it

ROUTING TABLE ENTRIES

 In each row, the destination router's address and the next router's address so that packets for that destination hop to that particular router

ROUTER

- Not possible for a router to hold routing table entries for all the IP destination addresses on the Internet
- Not possible to store information about a large number of source and destination systems each having a distinct IP address

ROUTER

- Belong to either a class A, B, or C subnet
- The Internet consists of class *A*, *B*, and *C* subnets that are connected to the hosts (computers, nodes, and service terminals)
- Each subnet consists of a large number of connected local subnets or hosts

- TCP/IP suite 5 layer protocol suite
- L7, L4, L3, L2 and L1
- TCP or UDP at L4
- IP protocol for L3 networking layer
- Packetization befor transmission
- Each packet IP header of minimum 5 word
- Size 2¹⁶

... SUMMARY

- Router for sending packets simultaneously to multiple available paths to destination
- Routing table regularly maintained and updated
- Router belong to a class A or B or C subnet

End of Lesson 02

IP Protocol, IP Packets and TCP/IP Suite

© Oxford University Press 2018. All rights reserved.