
WIRELESS MEDIUM ACCESS CONTROL AND CDMA, 3G AND 4G COMMUNICATION

Lesson 11 WCDMA

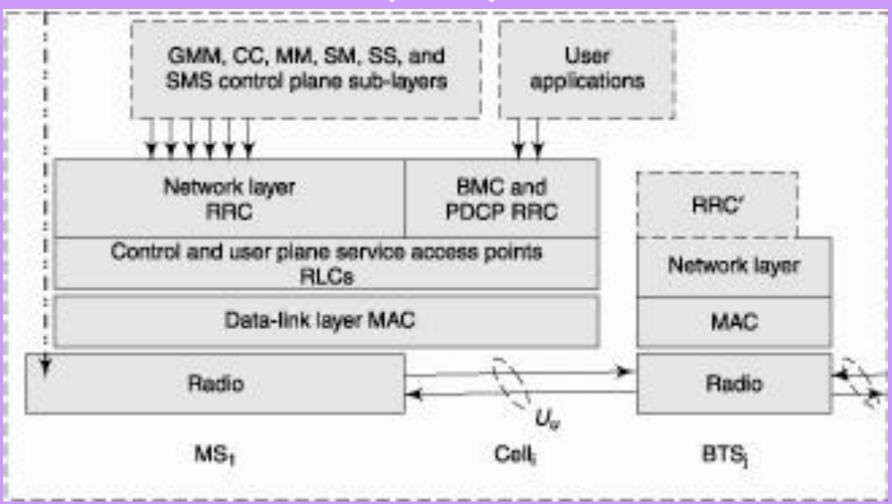
3G TECHNOLOGIES COVERED IN IMT-2000 GLOBAL STANDARDS

WCDMA

- Supports data rates of 2 Mbps or higher for short distances
- 384 kbps for long distances

WCDMA-FDD

- WCDMA access is either FDD or TDD (time division duplex)
- WCDMA-FDD Also referred to as UTRA-FDD (universal (or sometimes UMTS) terrestrial radio access-frequency division duplex)
- FDD separates reverse link (called uplink in GSM) and forward link (called downlink in GSM) frequencies 2018. All rights reserved.


WCDMA-FDD

 FDD separates reverse link (called uplink in GSM) and forward link (called downlink in GSM) frequencies

WCDMA-FDD

- 1.920–1.980 GHz for uplink
- 2.110–2.170 GHz for downlink
- Each 5 MHz bandwidth
- Wider than the 1.25 MHz of the IS-95 (2G CDMA) system

PROTOCOL LAYERS IN THE WCDMA UPLINK TERMINAL (MS) AND DOWNLINK EQUIPMENT (BTS)

ALL THE PROTOCOL LAYERS IN THE WCDMA UPLINK TERMINAL (MS) AND DOWNLINK EQUIPMENT (BTS)

Radio

- FDD, asynchronous or (optionally) synchronous
- Dedicated physical channel
- Compressed mode
- Bursting and 10 ms, 15-slot framing
- Power control
- Synchronizing the MSs and MS path-delay corrections, identification of primary and secondary synchronization codes
- Identification of scrambling code
- 3.84 Mchip/s chipping, spreading and scrambling
- Channelization (OVSF) and scrambler (S2 or long 38400 Gold) coding
- Transport channel combining, data interleaving, and encryption
- Measurements and soft handover
- QPSK modulation and transmission
- QPSK demodulation and reception

PHYSICAL LAYER

- Physical layer U_{ij} radio interface
- Supports asynchronous transmission
- Can also support synchronous transmission

DATA-LINK LAYER MAC

- Controls the flow of packets to and from the network layer
- Ciphering function
- Sends and receives data from control and user plane service access points at the radio link control (RLC) layer and sends it to the physical layer

NETWORK LAYER ABOVE THE RLCs

- Provides access to multiple services such as BMC (broadcast and multicast control protocol) for the user applications
- PDCP (packet data convergence protocol) for the user applications

APPLICATION LAYER

- GMM (GPRS mobility management)
- CC [call (connection) control]
- MM (mobility management)
- SM (session management)
- SS (supplementary service)
- SMS (short message service)
- User Applications

WCDMA

- Direct access CDMA (DS-CDMA)
- Supports fast power control messages at 1.5 kbps closed loop control (IS-95 uses 0.8 kbps open loop control)
- Frame duration in WCDMA 10 ms
- 15 separate time-slots of 0.666 ms for reverse and forward links for the periodic functions not related to user data bursts

CHIPPING RATE

- Chipping frequency used in WCDMA 3.84 Mchip/s
- Not compatible with IS-95 as 3.84 Mchip/s
 — not an integral multiple of the IS-95
 chipping rate of 1.2288 Mchip/s
- Modulation type used QPSK for both reverse and forward link frequencies
- Timing synchronization of base stations does not follow GPS system timings

DEDICATED AND COMMON CHANNELS

- Data link layer MAC two types of channels
- The common channels are control, paging, broadcast, and shared channels
- There are three dedicated channels dedicated physical control channel (DPCCH), dedicated physical data channel (DPDCH), and dedicated physical channel (DPCH)

CHANNELS

- Dedicated channels assigned to the MSs for uplink
- Also a common channel for traffic
- Transport channels (like access channel in cdmaOne)
- The channel code and structure different for the uplink DPCCH and for the downlink DPDCH channel

RANDOM ACCESS BURSTS

 Transmitted in 10 ms slots at fixed rates by a control mechanism and slotted Aloha protocol is used for access

SHORT DATA PACKETS

 Short data packets directly appended to the random access bursts in common (not dedicated) channel packet transmission

LONG DATA PACKETS

 Longer packets transmitted by dedicated channels at variable power, controlled by a power control message appended to the user symbols

DIFFERENT TYPES OF PHYSICAL CHANNELS.

- Special (distinct) waveforms only
- Each pair of spreading and scrambling codes defines the remaining physical channels

WCDMA UPLINK CHANNELIZATION CODES

- For controlling and synchronizing multiple data rate channels
- UMTS terrestrial radio access network (UTRAN) channelization codes for synchronizing the multiple user terminals (MSs)

CODE ALLOCATION FUNCTIONS

- The MS performs code allocation functions for uplink channelization code as per the data rate
- BTS performs the code allocation at the downlink radio-planning layer for the scrambling code

POWER CONTROL SIGNALS

- WCDMA reverse link (mobile terminal uplink) transmits pilot symbols, which are multiplexed with rate information as well as power control messages
- Rate information facilitates coherent detection

MULTI-RATE TRANSMISSION OF SIGNALS

- Single code used when transmitting small data rate signals multiplexed in time-space and multiple codes are used when transmitting large data rate signals multiplexed in code-space
- A single code for small data rates
- Multiple codes for large data rates

USE OF VARIABLE RATES BY WCDMA PROCESSING UNITS

- Types of data need to be transmitted at fast rates and some other types of data, for example, voice-data, power control data, and SMS text, require slow transmission rates
- Variable rates required in different types of services to form a system

USE OF VARIABLE RATES BY WCDMA PROCESSING UNITS

- Orthogonal coding for channelization asymmetrical in uplink and downlink
- WCDMA employs a constant chipping rate for spreading but variable spread factors, called OVSF (orthogonal variable spreading factors)

SPREAD FACTOR CONTROL

- Controls the user data rate. When spread factor = 4, user data rate becomes ¼ of the rate corresponding to spread factor = 1
- OVSF codes support both orthogonality as well as variable data rates for a physical channel
- Uplink OVSF does not separate the users due to different delays expected from the near and far terminals (MSs)

VARIABLE SPREAD FACTOR

- WCDMA also uses variable spreading codes but ones that are different from the Walsh code
- Use of variable spread factor controls the signals with multiple data rates
- The code length used per symbol is 4 when the downlink user symbol data rate needed is 1.92 Mbps
- 512, when the data rate needed is 15 kbps

VARIABLE SPREAD FACTOR

- Spreading codes of different lengths thus used and orthogonality of the codes is maintained
- The source (MS) and channel for these symbols when using orthogonal code spreading then gets uniquely identified on de-spreading at the receiver

REVERSE CHANNELS

- Uses Gold and S(2) codes
- Chipping rates for these codes are 38400 and 256 chips, respectively
- Gold codes used for the MS user symbols
- S(2) codes identify the user at the receiver

COMPATIBILITY WITH COMAONE AND CDMA2000 SYSTEMS

- WCDMA systems can be made compatible with cdmaOne and CDMA2000 systems
- Use of synchronous base stations
- Employing multi-carrier mode with a chipping rate of 3.6864 Mchip/s (which is an integral multiple of the IS-95 chipping rate of 1.2288 Mchip/s)
- Adding a CDMA pilot to the direct spread mode data

SUMMARY

- WCDMA data rates of 2 Mbps or higher for short distances
- 384 kbps for long distances
- FDD asynchronous communication
- Dedicated physical channels
- Bandwidth 5 MHz uplink and 5 MHz downlink

- Different type of physical channels
- Power control open loop
- Multi-rate transmission
- 3.8 Mchips/s
- OVSF
- QPSK

End of Lesson 11 WCDMA