WIRELESS MEDIUM ACCESS CONTROL AND CDMA, 3G, WIMAX, 4G AND 5G NETWORKS

Lesson 01 Modulation

MODULATION

- Information, Messages, Music, Voice, Video, images modulate onto a carrier(s) of very high frequency
- Modulating signals are analog or digital.
- Digital are either 0 or 1 form, or symbols.
- Symbols are 2, 3, 4, 5 or 6 bit long

MODULATION

- Modulation is a process of varying carrier parameters as a function of input analog or digital signals, due to voice, music or other information source
- Parameter are amplitude, frequency and phase angle (at t = integral multiple of time period)

MODULATION

- Analog signal modulation
- Digital Modulation– Modulating bits (1 or 0), symbols (pair of bits 11, 10, 01, 00), triplet of bits 111,, 000, quadruplet of bits 1111, 0111, 0011,
- Modulation of signals before the medium access

ÅNALOG SIGNALS AT ANY INSTANT *T*

- Assume carrier signal $s_c(t) = s_{c0} \sin [2\pi f_c t + \phi_{c0}]$
- Amplitude modulation means carrier signal peak s_{c0} amplitude varying proportional to $s_m(t)$.
- Frequency modulation means carrier frequency f_c varying proportional to s_m(t)
- Phase modulation means carrier phase ϕ_{c0} varying proportional to $s_m(t)$

DIGITAL SIGNAL AT ANY INSTANT TAFTER MODULATION

- Voice converts to digital signals, of 1s and 0s.
- FSK (frequency shifted keying) means carrier signal frequency shifts to f_{c1} or f_{c0} , depending on signal 1 or 0, respectively.
- PSK (phase shifted keying) means carrier signal frequency phase shifts to φ_{c0} + π/2 or φ_{c0} π/2 depending on signal 1 or 0, respectively.

QPSK (QUADRATURE PHASE SHIFTED KEYING)

• Two bits are grouped. S_0 , S_1 , S_2 and S_3 are four symbols—11, 01, 10 and 00. QPSK S_0 , S_1 , S_2 and S_3 phase angles are (i) $\varphi_c(t)$ is advanced by 45° ($\pi/4$ radian), (ii) reduced by 45° (= $315^\circ = 7\pi/4$ radian), (iii) advanced by 135° ($3\pi/4$ radian) and (iv) reduced by 135° (= $225^\circ = 5\pi/4$ radian), respectively.

QAM (QUADRATURE ÅMPLITUDE MODULATION)

- Transmits symbols S0, ...,S63 where each symbol is a sequence of 6 bits. [2⁶ = 64.]
- 64 Symbols are 111111, 011111, ..., 000000.
- Three bits determine carrier quadrature and phase angle, and three determine the amplitude A1, A2 or A3

QAM (QUADRATURE ÅMPLITUDE MODULATION)

• When the bits are transmitted after 64-QAM, the large spectrum bandwidth requirement reduces,

MODULATION METHODS

Figure 5.1

- AM, FM, PM
- FSK, PSK
- QPSK
- QAM

End of Lesson 01 Modulation