2 G ARCHITECTURE- GSM, GPRS AND OTHERS

Lesson 03 SDMA, TDMA, and FDMA in GSM

 Means that different channels, users, or sources can share a common space, time, frequency, or code for transmitting data

MULTIPLEXING

- Space division multiple access (SDMA)
- Time division multiple access (TDMA)
- Frequency division multiple access (FDMA)

SDMA- A DIVISION OF AVAILABLE SPACE

- Multiple sources can access the medium at the same time
- Wireless transmitter transmits the modulated signals and accesses a slot in space and another transmitter accesses another slot such that signals from both can propagate at same instance in two separate spaces in the medium without affecting each other

SDMA EXAMPLE

- Four groups *A*, *B*, *C*, and *D* of mobile users and four different regional slots, *R*1, *R*2, *R*3, and *R*4 in space
- Group A uses R1, B uses R2, C uses R3, and D uses R4 for transmitting and receiving signals to and from a base station at an instance using same signal frequencies

A CELL, FORMED BY SDMA WITH TWO RADIO-CARRIER CHANNELS CH_M AND CH_N

© Oxford University Press 2018. All rights reserved.

SPACE DIVISION MULTIPLE ACCESS OF THE SIGNALS FROM THE MSS

- A given BTS_j covers the *i*th cell-sector and the cell space is presently covering *k* mobile stations, MS1, MS2, ..., MSk
- k can vary with time MS can always change its location and move into another cell)

CAPACITIES OF GSM NETWORK CHANNELS

 Enhances using SDMA as this allows serving multiple users in the same frequency but in distinct time slots

TDMA IN A RADIO-CARRIER CHANNEL CH_M

- A set of maximum 8 MSs out of / MS_s can be assigned a radio carrier channel by a BTS_i using FDMA
- Transmits in distinct time slots SL0, SL1, ..., SL7, each of 577 μs
- An MS uses one of the 8 distinct time slots in a given channel

TDMA-DIFFERENT SOURCES USING DIFFERENT TIME-SLICES FOR TRANSMISSION

OF SIGNALS

- An access method in which multiple users, data services, or sources allotted different time-slices to access the same channel (frequency band) in same slot in space.
- Available time-slice divided among multiple modulated-signal sources. These sources use the same medium, set of frequencies, and same channel for transmission of data.

GSM AND CDMA BASED

STANDARDS

TDMA EXAMPLE

- GSM Eight radio-carriers (e.g., mobile phones) C1, C2, C3, C4, C5, C6, C7, and C8 in eight TDMA time-slices, one for each radio carrier.
- Eight phones (GSM devices) simultaneously transmit in the same frequency band (channel) and same space
- Time-slice allotted to each = 577 μ s

FDMA-DIFFERENT SOURCES USING DIFFERENT FREQUENCY FOR TRANSMISSION OF SIGNALS

- An access method in which multiple users, data services, or sources allotted different frequency-slices (bands) to access same space and time-slice
- Available frequency range divides into bands which are used by multiple sources or channels at the same time
- Various channels allotted distinct frequency bands for transmission

FREQUENCY DIVISION MULTIPLE ACCESS

 Dividing the allotted or available bandwidth into different frequency channels for communication by multiple sources (sets of MTs)

RADIO-CARRIER CHANNELS

- A set of maximum 124 radio-carrier channels each of 200 kHz can be used in GSM 900 downlink channel (MSC to BSC, BSC to BTS, and BTS to MS)
- 124 in the uplink channel (MS to BTS, BTS to BSC, and BSC to MSC)

RADIO-CARRIER CHANNELS

- The 124 slots in GSM 900 in the uplink frequency range —ch1: 890.1 MHz \pm 100 kHz, ch2: 890.3 MHz \pm 100 kHz, and so on till ch124: 914.9 MHz \pm 100 kHz
- Downlink frequency slots —ch1: 935.1 MHz \pm 100 kHz, ch2: 935.3 MHz \pm 100 kHz ... and the last frequency is ch124: 959.9 MHz \pm 100 kHz

GUARD BAND

- GSM 900 system permits a guard band of 50 kHz at the lowest frequency end and a guard band of 50 kHz at highest frequency band
- Thus Actual frequency band for the 890.1 MHz \pm 100 kHz ch1 is 890.1 MHz \pm 50 kHz
- The guard bands guard against frequency drifts in radio carriers

CHANNELS ALLOTTED AT A GIVEN INSTANT TO A BTS

- Maximum 10
- The mobile service provider reserves one channel per BTS for transmission to MS or BSC

GSM SYSTEM STATION CHANNELS

- Total number of channels assigned to a BTS is 11
- A GSM system station is permitted use the ch2 to ch123 only
- 122 channels are available in GSM 900
- Total number of reserve channels can be 32 for the data transmission of mobile service provider

- <u>Space division multiple access</u> (SDMA)
- When a cell divides in four groups A, B, C, and D of mobile users in four different regional slots (Sectors R1, R2, R3, and R4) in space then four MTs use same time slots and same frequency channels

- <u>Time division multiple access</u> (TDMA)
- GSM Eight phones (GSM devices) simultaneously transmit in the same frequency band (channel) and same space with Time-slice allotted to each = 577 μ s

- Frequency division multiple access (FDMA)
- Maximum 124 radio-carrier channels each of 200 kHz can be used in GSM 900 downlink channel
- 124 in the uplink channel (MS to BTS, BTS to BSC, and BSC to MSC)

End of Lesson 03 SDMA, TDMA, and FDMA