MOBILE COMMUNICATION — AN OVERVIEW

Lesson 04 Introduction to SDMA, TDMA, FDMA, CDMA and OFDAM

MULTIPLEXING

 Means that different channels, users, or sources can share a common space, time, frequency, or code for transmitting data

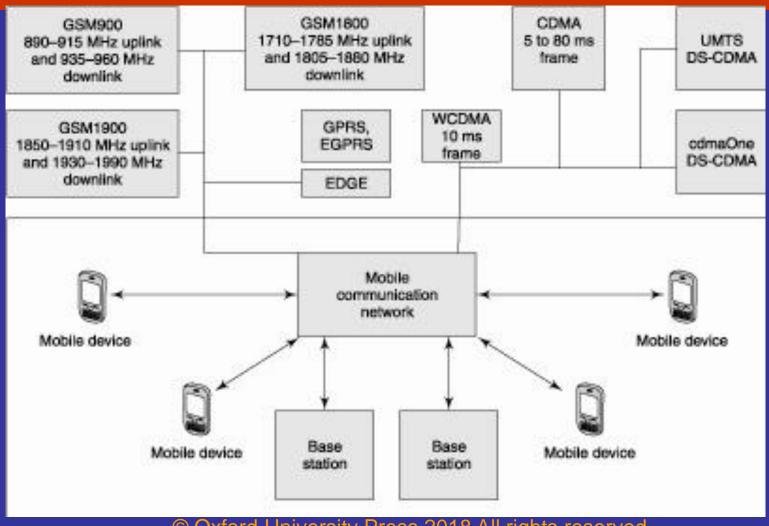
MULTIPLEXING

- Space division multiple access (SDMA)
- Time division multiple access (TDMA)
- Frequency division multiple access (FDMA)
- Code division multiple access (CDMA)
- Code Orthogonal frequency division multiple access (COFDM) also called OFDM

SDMA— A DIVISION OF AVAILABLE SPACE

- Multiple sources can access the medium at the same time
- Wireless transmitter transmits the modulated signals and accesses a slot in space and another transmitter accesses another slot such that signals from both can propagate at same instance in two separate spaces in the medium without affecting each other

SDMA EXAMPLE


- Four groups A, B, C, and D of mobile users and four different regional slots, R1, R2, R3, and R4 in space
- Group A uses R1, B uses R2, C uses R3, and D uses R4 for transmitting and receiving signals to and from a base station at an instance using same signal frequencies

TDMA— DIFFERENT SOURCES USING DIFFERENT TIME-SLICES FOR TRANSMISSION OF SIGNALS

- An access method in which multiple users, data services, or sources allotted different time-slices to access the same channel (frequency band) in same slot in space.
- Available time-slice divided among multiple modulated-signal sources.
 These sources use the same medium, set of frequencies, and same channel for transmission of data.

GSM AND CDMA BASED

STANDARDS

TDMA EXAMPLE

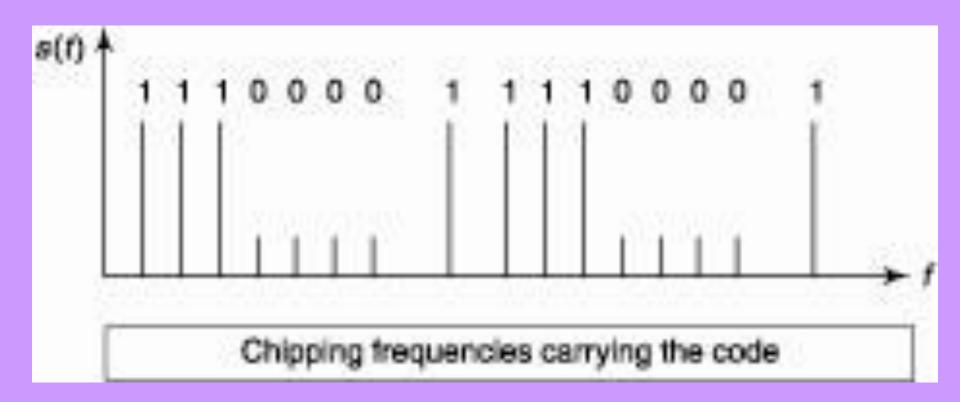
- GSM Eight radio-carriers (e.g., mobile phones) C1, C2, C3, C4, C5, C6, C7, and C8 in eight TDMA time-slices, one for each radio carrier.
- Eight phones (GSM devices)
 simultaneously transmit in the same
 frequency band (channel) and same
 space
- Time-slice allotted to each = 577 μs

FDMA— DIFFERENT SOURCES USING DIFFERENT FREQUENCY FOR TRANSMISSION OF SIGNALS

- An access method in which multiple users, data services, or sources allotted different frequency-slices (bands) to access same space and time-slice
- Available frequency range divides into bands which are used by multiple sources or channels at the same time
- Various channels allotted distinct frequency bands for transmission

FDMA EXAMPLE

- GSM 900 at 890–915 MHz uplink from user to the base station and 935–960 MHz downlink
- Each channel 200 kHz bandwidth
- 124-channel uplink needs 200 kHz × 124
 = 24.8 MHz
- Similarly, 124-channel downlink requires 24.8 MHz


CDMA— DIFFERENT SOURCES USING DIFFERENT CODES FOR TRANSMISSION OF SIGNALS

- An access method in which multiple users are allotted different codes (sequences of symbols) to access the same channel (set of frequencies)
- A symbol is a bit (0 or 1) or pair of bits (00, 01, 10 or 11) or a set of bits which transmits after encoding and processing bits of data such as text, voice, pictures, or video

CDMA EXAMPLE— EACH CODE IS UNIQUELY MADE UP OF NSYMBOLS

- Used for transmitting a signal consisting of set of frequencies fc0, fc0 + fs, fc0 + 2fs, ..., fc0 + (n-2) fs, fc0 + (n-1) fs by the same channel.
- Frequencies are also called chipping frequencies in a scheme called DSSS (Direct Sequence Spread Spectrum) and called hopping frequencies in FHSS (Frequency hopping Sequence Spread Spectrum)

CDMA CHIPPING FREQUENCIES WHEN AN EXEMPLARY CODE 111100001

OFDMA

- An access method in which multicarrier, multi-tone transmitting for a set of symbols
- Multiple users, data services, or sources allotted different frequency-slices (bands) to access in same space and time-slice but distinct codes which are orthogonal to each other

OFDMA

- Each carrier transmits a distinct set of sub-carriers and each set of sub-carriers is assigned a code which is orthogonal to another
- Two frequency signals s1(t) and s2(t) are said to be orthogonal if s1(t) has maximum amplitude at the instant when s2(t) has zero amplitude and vice versa

OFDAM

- An access method in which the adjacent sets of sub-carriers {[$f_{c0}/n_{\rm sc}$ f_g + (f_{c0} $n_{\rm sc}^{-1}$ + $n_{\rm sc}^{-1}f_{\rm s}$), ...], [$f'_{c0}/n_{\rm sc}$ f_g + ($f'_{c0}n_{\rm sc}^{-1}$
- $+ n_{sc}^{-1} f'_{s}), ...], [f'_{c0}/n_{sc} f''_{g} + (f''_{c0}n_{sc}^{-1})]$
- + $n_{\rm sc}^{-1} f''_{\rm s}$), ...] that are carrying a subset of symbols are orthogonal

SUMMARY

- Space division multiple access (SDMA)
- Time division multiple access (TDMA)
- Frequency division multiple access (FDMA)
- Code division multiple access (CDMA)
- Code Orthogonal frequency division multiple access (COFDM) also called OFDM

End of Lesson 04 Introduction to SDMA, TDMA, FDMA, CDMA and OFDAM