MOBILE COMMUNICATION – AN OVERVIEW

Lesson 03

Introduction to Modulation Methods

MODULATION

- The process of varying signal, called *carrier*, according to the pattern provided by another signal (modulating signal)
- The carrier usually an analog signal selected to match the characteristics of a particular transmission system.

... MODULATION

 The amplitude, frequency, or phase angle of a carrier wave is varied in proportion to the variation in amplitude of the modulating wave (message signal)

EQUATION FOR SIGNAL AMPLITUDE AT AN INSTANT T, S(T)

- $s(t) = s_0 \sin \left[(2\pi \times c/\lambda \times t) + \Phi_{t0} \right]$ = $s_0 \sin \left[(2\pi \times f \times t) + \Phi_{t0} \right]$
- s_0 the peak amplitude (amplitude varies between s_0 and $-s_0$)
- c the velocity of the transmitted wave
- Φ_{t0}— the phase angle of the signal at t = 0 (a reference point with respect to which t is considered)
- *f* the signal frequency

MODULATION OF THE VOICE OR DATA SIGNAL

A technique by which f_c or a set of carrier frequencies used for wireless transmission such that

- peak amplitude, s_{c0} , or
- frequency, f_c , or
- Phase angle Φ_{ct0} varies with *t* in proportion to the peak amplitude of the modulating signal $s_m(t)$

MODULATION

- Amplitude modulation (AM) if amplitude s_{c0} of carrier varied
- Frequency modulation (FM) if frequency f_c varied
- Phase modulation if phase angle $\Phi_{\rm t0}$ varied

AMPLITUDE MODULATION (AM)

FREQUENCY MODULATION (FM)

DIGITAL MODULATION

A technique by which amplitude, frequency, or phase angle parameters of carrier or sub-carrier frequencies varied according to the variation in the

- modulating signal bit 1 or 0 the or
- modulating bit-pair 00, 01, 10 or 11
- or set of 3 or 4 or more bits

DIGITAL MODULATION OF 1S AND OS

- Amplitude Shifted Keying (ASK)– if as per 1 or 0, the amplitude sco of carrier varied
- Frequency Shifted Keying (FSK)– if as per 1 or 0 the frequency f_c varied

AMPLITUDE SHIFTED KEYING MODULATION (ASK)

FREQUENCY SHIFTED KEYING MODULATION (FSK)

PHASE MODULATION OF 1S AND OS

- Binary Phase Shifted Keying (PSK or BPSK) 0° or 180° if as per 1 or 0 phase angle varied
- Gaussian Minimum-phase Shifted Keying (GMSK) 0° – if change from 1 to 0 then angle change by 180°, and if change from 0 to 1 then angle change by –180° and then use a minimizing technique for filtering of high frequency components introduced using PSK

PHASE MODULATION OF 1S AND OS

- Quadrature Phase Shifted Keying (QPSK or BPSK) as per 10, 00, 01 or 11
- QPSK Phase angle shift = Φ of the transmitted signal s(t) will be $3\pi/4$, 3 $\pi/4$, $-\pi/4$, + $\pi/4$ (= 135°, 225°, 315°, 45°) after each successive time interval T when bit pattern is <u>10 00 01 11</u>. [T = 1/f]

8-PSK MODULATION

 Bit pattern is <u>101 000 110 011 100 111</u>. The phase angle of the transmitted signal *s*(*t*) will be -5π/8, π/8, -3 π/8, 7π /8, -7π/8, and -π/8, after each successive time interval of T. [T = 1/f]

QUADRATURE AMPLITUDE MODULATION (QAM) MODULATION

- Quadrature amplitude modulation
 quadrature phase shift keying
- 16-QAM— The 4 PSK with 4 combinations of 3-discrete values of amplitudes A0, A1 and A2 modulation

QUADRATURE AMPLITUDE MODULATION (QAM) MODULATION

- Quadrature amplitude modulation
 quadrature phase shift keying
- 64-QAM— The 8 PSK with 8 combinations of 4-discrete stage amplitudes A0, A1, A2 and A3 in modulation

SUMMARY

- Amplitude, frequency and phase modulations
- AM of analog signals
- FM of analog signals

Digital modulation

- I. BPSK
- II. GMSK digital modulation
- III. QPSK digital modulation
- IV. ASK and FSK digital modulations
- V. 8-PSK
- VI. 16-QAM
- VII. 64-QAM

End of Lesson 03 Introduction to Modulation Methods