MOBILE COMMUNICATION — AN OVERVIEW

Lesson 02 Propagation of Signals and need of modulation

WIRELESS PROPAGATION OF SIGNALS

- Faces many complications
- Mobility renders reliable wireless transmission much more difficult
- Antenna height and size at mobile terminals generally quite small

PROPAGATION PROPERTIES

- Obstacles in the vicinity of the antenna, significant influences propagated signals
- Influence vary with place, mobile terminal and time

LINE-OF-SIGHT PROPAGATION

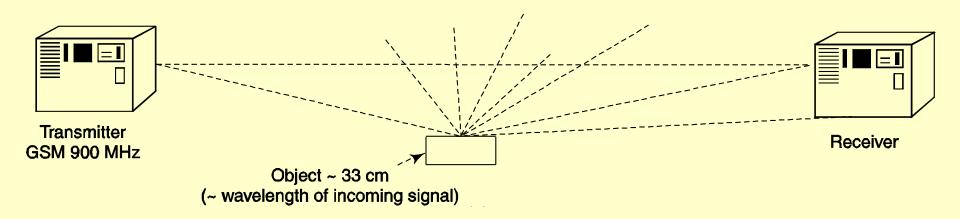
- Between the transmitter and receiver
- Transmission without refraction, diffraction, or scattering

SPHERICAL RADIATION PATTERN AND LINE OF SIGHT SIGNAL STRENGTH

- Decreases as square of the distance from transmitter assuming free space (space without consideration of medium characteristics)
- Radiated power distributed over larger spherical surface area at larger distances

SIGNAL STRENGTH

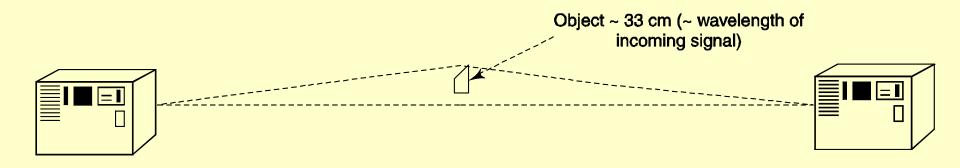
- 1. Decreases due to attenuation
- 2. When size of obstacles present in path of signal greater than the wavelength


SIGNAL STRENGTH ATTENUATION

- 1. FM band signal transmitter 90 MHz (λ = 3.3 m)— faces attenuation of in objects of size 10 m and above
- 2. GSM 900 MHz ($\lambda > = 33$ cm) signal—then it will face attenuation in objects of size > 1 m (means >> $\lambda \sim 33$ cm)

SCATTERING OF SIGNAL

- Decreases signal strength greatly
- Scattering from an obstacle of size equal to or less than the wavelength
- GSM signal, about 33 cm in wavelength, scattered by an object of 30 cm or less


SCATTERING OF SIGNALS

DIFFRACTION OF SIGNALS

- Bending of signals as a result of diffraction from the edges of an obstacle of size equal to or less than the wavelength.
- GSM signal of wavelength 33 cm will diffract from an object of 33 cm or less.

DIFFRACTION OF SIGNALS

REFLECTION OF SIGNALS

- Signal reflected from the surface of an obstacle, the earth's surface, or a water body of size greater than the wavelength of the signal.
- GSM 900 MHz (λ = 33 cm) signal the transmitter signals reflect from an object of size 10 m and above (much greater than λ)

REFLECTION OF SIGNALS

GSM 900 MHz $t_{\text{direct}} = 1000 \text{ m/}(3 \times 10^8 \text{ m s}^{-1}) = 3.33 \text{ } \mu\text{s}$ $t_{\text{indirect}} = 1000 \text{ m/}(\sin 60^\circ \times 3 \times 0^8 \text{ ms}^{-1}) = 3.85 \text{ } \mu\text{s}$ 120° Transmitter GSM 900 MHz Building or lake > 10 m(wavelength of incoming signal)

DELAYED REACH OF REFLECTED SIGNALS

- Delay more pronounced in case of multihop paths.
- Distorts waveforms
- Causes misrepresentation of information which encode the signals

ELIMINATION OF SIGNAL DISTORTIONS DUE TO DELAYS

- Use digital signal processing techniques
- Recovers original signal

CHARACTERISTICS OF RADIATED SIGNALS FROM ANTENNAE

- Power radiated proportional to the signal frequencies
- Sizes of antennae required for wireless transmission inversely proportional to the frequencies

LOW FREQUENCY RANGE SIGNALS

- Requirement of abnormally large sized antennae
- Moreover, properties medium (air or vacuum)— such that ultra low frequency signals can't be transmitted across long distances without significant loss of signal strength

VOICE AND MUSIC SIGNALS

- Voice signals very low frequencies between 0.1 kHz to 8 kHz
- Music-signal frequencies lie between 0.1 kHz to 16 kHz.
- Ranges unsuitable for wireless transmission

MODULATION

- Makes wireless transmission of low frequencies and very low frequencies practical
- Increases the compatibility of transmitted signal and transmission medium

SUMMARY

- Propagation of signals
- Line of sight propagation
- Attenuation in obstacles in the path of the signals if obstacle sizes greater than radiated wavelengths
- Scattering from obstacles of sizes equal to or less than the wavelength

. . .

... SUMMARY

- Diffraction from the edges of an obstacle of size equal to or less than the wavelength
- Reflection from the surface of an obstacle, the earth's surface, or a water body of size greater than the wavelength of the signals

... SUMMARY

- Properties medium (air or vacuum)—
 such that ultra low frequency signals
 can't be transmitted across long
 distances without very high loss in signal
 strengths at the receivers
- Modulation of signals with the very highfrequency carriers must

End of Lesson 02 Propagation of Signals and need of Modulation of the signals