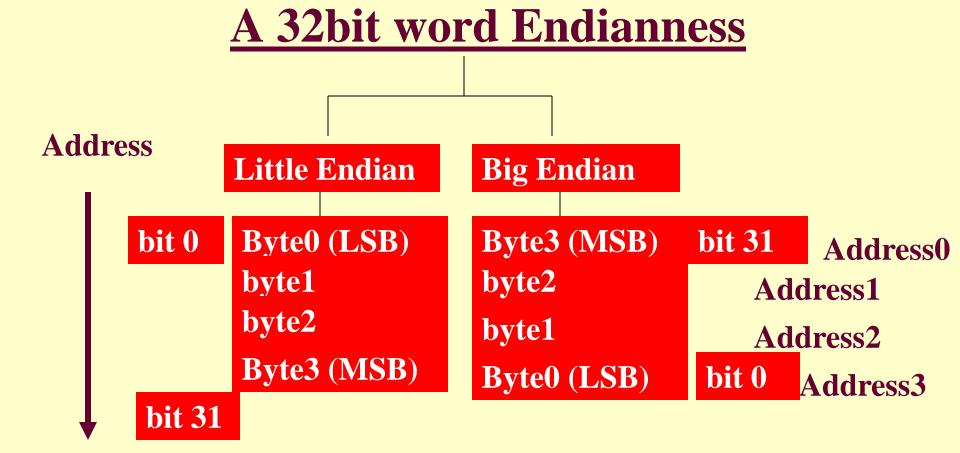
# Chapter 15


# ARM – Architecture, Programming and Development Tools

#### Lesson 3

# **ARM Programming Model**

## ARM data types

- Word is 32 bits long.
- Word can be divided into four 8-bit bytes.
- ARM addresses cam be 32 bits long.
- Address refers to byte.
  - Address 4 starts at byte 4.
- Can be configured at power-up initialisation as either little- or bit-endian mode.



#### Two Initialization options

## - Registers

R0 R1 R2 R3 R4 R5 R6 R7 Lo registers

R8 R9 R10 R11 R12 Hi registers

SP (R13) Stack Pointer

LR (R14) Link Register

PC (Rr15) Program Counter

#### **CPSR**

N (negative), Z (zero), C (carry), V (overflow).

Every arithmetic, logical, or shifting operation sets CPSR bits

**SPSR** 

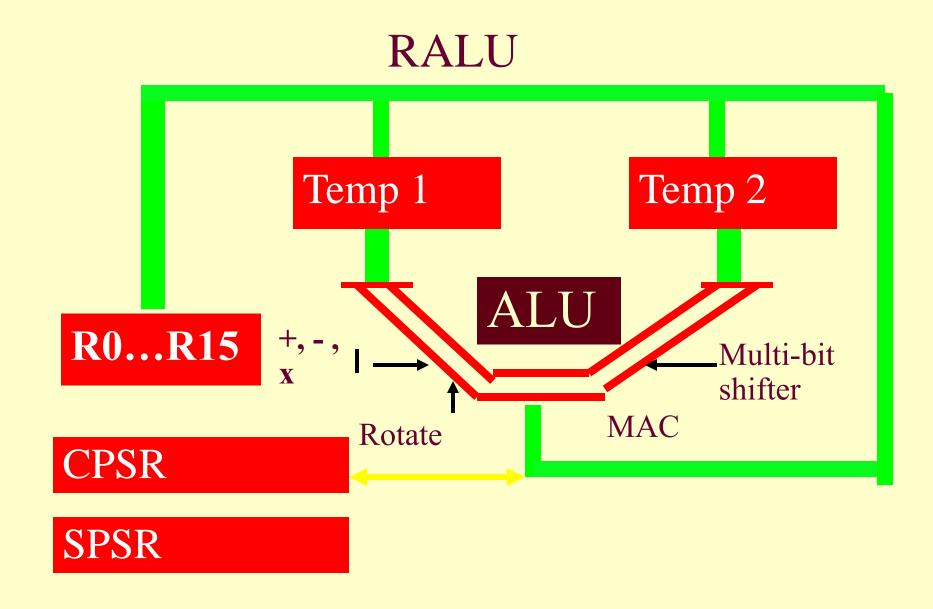
# ARM data types in Programming

- Word 32 bits long
- Half Word 16-bit long
- Byte 8-bit long

#### ARM status bits

- Every arithmetic, logical, or shifting operation sets CPSR bits:
  - N (negative), Z (zero), C (carry), V (overflow).
- Examples:
  - --1+1=0: NZCV = 0110.
  - $-2^{31}-1+1 = -2^{31}$ : NZCV = 0101.

# ARM Family Programming Model


• 16 general-purpose registers with program counter as one of the register (R15)

#### CPSR and SPSR

- CPSR (Conditions and Processor Status Register)
- SPSR (Saved Program Status Register) Saves Program Status Register from CPSR on branch and link (routine call) and SPSR can be stacked for each processor mode

# Register ALU

- 32-bit RALU and highperformance multiplier
- Instructions have 8-, 16-, and 32-bit data types



### ARM 7 T Variants

# ARM® TDMI TM instruction set options-

- 1. High-performance 32-bit instruction set-
- 2. High-code-density Thumb®16-bit instruction set than 32-bit instruction architecture

# Summary

#### We learnt

- 32 bit Sixteen Registers plus CPSR and SPSR
- 32/16/8 bit data types
- r15 Program counter
- r14 Link Register for return
- r13 stack pointer

# End of Lesson 3 on ARM Programming Model