Chapter 14

80x96 Family Microcontrollers

Lesson 12

Interrupt Handling System

Interrupt mask bits (primary and secondary level)

• PSW lower byte (SFR at 0x08) saves the mask bits for multiple interrupt source groups and peripheral server enable (PSE) bit to support DMA operations

Interrupt Masks

Primary

Mask

→ By setting I bit at PSW-Hi

Secondary Masks INT_Mask PSW-Lo at 08H write

INT_Mask1 at 13H write

Interrupt vectors

- Between 0x0100H and 0x207F there are P3 and P4 port registers, Interrupt vectors and PTS vectors
- Lower table of interrupt vectors at 2000H to 2013H
- Upper Table at 2030H to 203FH

Interrupt Vectors

Address

2000-01H Timers 1 and 2

П

П

203E-3F T1or T2 overflow lowest

Interrupt-mask registers and Interrupt-Pending Registers

- Nine Bytes of SFRs Common in all 4 Windows
- Zero register
- 08H and 13H Two bytes for interrupt-mask registers (one only in 8096)
- 09H, 12H Two bytes for interrupt-pending registers (one only in 8096)
- One byte for window select register
- Two bytes for SPL-SPH.

For Maskable interrupts

Interrupt Identification flag at SP_STAT, IOS1, IOS0

Pending Register

INT_Pend read at 09H te

INT_Pend1 at 12H write

Interrupt Pending Identification

interrupt mask register

INT_Mask

When write 08H

INT_Mask1

When read 13H

interrupt mask register1

Hardware interrupt pins

- EXINT (maskable) [P2.2 external interrupt, EXINT]
- EXINT1 (maskable) [P0.7 EXINT1]
- NMI Interrupt (non-maskable)

Generating interrupt on HSO

• HSO_Command bit b4 [b20]= 1

Generating Timer overflow interrupts

• T10VIE and T20VIE interrupt on overflow enable bits to unmask the interrupts on timeouts of timers 1 and 2 at IOC1 (Input-Output Control 1 Register).

Software Interrupts

- A Software timer interrupt causes execution of a service routing on successful comparison but no change in an HSO output pin level
- Four software timers are programmable
- Command bits in HSO_CAM at 0x0006 (write)

Flags for interrupts of software timer

• IOS1.0, IOS1.1, ISO.2 and ISO.3, respectively, Software timer 0, software timer 1, software timer 2, and software timer 3 interrupt occurrence flag bits

Seventenn Interrupts

- Interrupt at NMI pin (highest priority)
 Interrupt at HSI unit
- EXINT1 P0.7 pin Interrupt
- T2 Overflow
- T2 Capture when internal clocking
- HSI FIFO half-full interrupt

Seventenn Interrupts

- Serial Receiver RI set
- Serial Transmitter Empty TI set
- Unimplemented opcode Instruction
- Trap on External Interrupt,

Seventenn Interrupts

- EXINT
- SI interface Interrupts
- Any or both TI (transmitter interrupt) and RI(Receiver Interrupt)
- Software Timers Interrupts,

Seventeen Interrupts

- ADCstart at T2 resetHSI pin 0 input instance Interrupt
- HSO Interrupts HSO.0 to HSO.5
- Interrupts from the HSI capture data ready and FIFO full
- A/D conversion over interrupts
- Interrupts from Any or both T1 and T2(lowest priority)

Maskable Interrupts Priority

High

FIFO full

T2

HSI-FIFO

RI and TxEI

WDT

EXINT

Synchronous SI, SI UART mode

HSI.x pin capture

T2OVFand then T2CAP

4th entry interrupt

RI and then TxEmpty

WDT overflow intr..

External pin intr..

Serial Devices interrupts

Maskable Interrupts Priority

High SWTs/ADC

) W IS/ADC

HSI.0

HSO

HSI

ADC

T1 orT2

Low

software timer interrupts, AD conversion start, T2 Reset

HSI.0 pin capture interrupt

HSO events interrupts

Capture Ready or FIFO full

conversion over

Overflow intr..

NMI pin interrupt Highest Priority

- Maskable EXINT1 next highest priority
- Maskable T2Overflow next highest
- Maskable T2CAP next highest

- HSI-FIFO Half full next highest
- RI serial next highest
- Tx empty next highest
- Unimplemented opcode WDT timeoutnext highest

- Software Interrupt
- Trap instruction-next to WDT Priority

- P2.2 EXINT pin interrupt next highest
- Any TI or RI SI interrupt next highest
- 4 SWTs interrupts
- ADC start
- T2 reset next highest

- HSI.0 pin time-capture interrupt next highest priority
- HSO.0-HSO.5 interrupt next highest
- HSI capture data ready
- FIFO full interrupt next highest

- AD conversion over next priority
- Either T1 or T2 overflow lowest priority

Steps in Interrupt ISR Start and Return

Priority

Default Assignments

Push

PCH, PCH on to stack

Pre emption

Yes in between preemption by higher priority interrupt if not defined as masked

Pop

→ PCH, PCH from stack

Summary

We learnt

- Interrupt Handling System
- Interrupt Vectors
- Interrupt masks
- Hardware interrupt pins
- Interrupt Priorities

End of Lesson 12 on

Interrupt Handling System