Chapter 14

80x96 Family Microcontrollers

Lesson 2

80x96 MCU
 H- and V-Windows

Page

- 1 Page = 256 byte
- Page 0256 bytes accessed by 256 addresses
- Page 1256 bytes accessed by 256 addresses usng concept of V-windows
- Between 0x0000 and 0x00FF, there are Special Function Registers (SFRs), SP (at $0 \times 18 \mathrm{H}-0 \times 19$) and a register file of 232 bytes at Internal RAM, and page 0 RAM

Direct 8-bit addresses and 16 bit addresses

 Direct Address
Page 0 addresses

00H-17H

IO and internal devices Registers
SP and register file (internal RAM) \square
8-bit addresses 00H to FFH

Control and Status

16-bit
addresses 0000H to 00FFH

Direct 8-bit addresses and 16 bit addresses

 Direct Address
Page 1 addresses
 Register file (internal RAM)

16 bit addresses

16-bit addresses $0100 H$ to FFFFH

|

Internal and External RAM and ROM

Horizontal Windows

- Identical 8 -bit address at page 0 used for a byte among more than 256 bytes using the concept of four horizontal windows

Page 0 addresses between 00 H and FFH can be 256 addresses

A Page-0 8-bit address between 00 H to FFH can be assigned to $256 \mathrm{~B} \times 4=1024$ internal bytes in 80×96, if page 0 is considered having four horizontal windows

80x96 Four Horizontal Windows

$\mathrm{H}-0$ read	$\mathrm{H}-0$ write	H 1	H 15

Horizontal H0 Windows

- During write instruction, we consider using one H0-window
- During read operation, we consider using another H0-window

Horizontal Windows

Page 0 Address
IO and internal devices
Control and Status SFRs

SP + Register file 232B

Direct Address 18HFFH

Window select Register

Window Select Register (A special Function Register)

16-bit address 0013H Write
Selects V and H window

13H - When write Direct Address
8-bit
address 13H

Lsb b0-b6

msb b7 - write control
 Bit for hold acknowledge

msb b7-read
hold pin status

Select an H-window write b6-b0

 Write b6-b4= 0000013 H write 16-bit address 0013H

Direct Address

Write b3-b0 8-bit address 13H

0000- H0-read or H0-write byte

0001- H1-read or write byte

1111-H15-read or write byte

Vertical Windows for 512 bytes

- Identical 8-bit or 7 -bit or 6 -bit or 5 -bit address at pages 0 and 1 (512 bytes) can be used for accessing a byte by considering the 512 bytes present in vertical windows
- V-Windows four options
- Two or four or eight or sixteen vertical windows
- 256 or 128 or 64 or 32 bytes in one Vwindow accessed by just 8-bit or 7-bit or 6bit or 5-bit address at pages 0 or 1

IO and internal devices Control and Status SFRs at Horizontal Window0 read, -0 write, 1 and 15
Register file 232B (including internal RAM)

Additional 256 B RAM

Page 1 addresses

Option 1

512 Bytes Page 0 and 1 addresses between 00H and FFH

- Page-0 and page-1, 8-bit address between 00 H to FFH can be assigned to $256 \mathrm{~B} \times 2$ $=512 \mathrm{~B}$, if pages 0 and 1 are assumed to be in two separate vertical windows V0 and V1 of 256 B each

Pages 0-1 addresses

80x96 Vertical Windows, V0 and V1

0000H-00FFH

0100H-01FFH

16-bit addresses 0000 H to 01 FFH

Select a V-window write b6-b0

 0013H个 13H - When write
16-bit address 0013H

Direct Address

8-bit
address 13H
Two V windows option 1

V-window V0

V-Window V1
Write b6-b2 = 00100
Write $\mathrm{b} 1-\mathrm{b} 0=00$ or $01 \quad$ Write $\mathrm{b} 1-\mathrm{b} 0=11$ or 10

512 Bytes Page 0 and 1 addresses between 00H and FFH

- Bit b0 in WSR is written $=0$ for lower half of a V-window and =1 for upper half

512 Bytes Page 0 and 1 addresses between $00 H$ and FFH

- A vertical window SFR or RAM can be associated with a distinct code block page and is addressed by 8-bit direct address in the a code-block of instructions

Option 2

7-bit addresses at Pages 0 and 1

- Pages 0 and 1 of 256 bytes each between 00 H and FFH divided in four V -windows
- Four vertical windows V0,V1, V2 and V3 of 128 B each
- Page 0 or 1 byte accessed by just 7-bit address between 00H to 7FH
- $128 \mathrm{~B} \times 4=512 \mathrm{~B}$ bytes at pages $0-1$ are

7-bit addresses at Pages 0 and 1

- A vertical window V0,V1, V2 or V3 can be associated with a distinct code block among the four memory areas each be accessed by 7-bit address (msb of address $=0$)

80x96 Vertical Windows, V0,V1, V2 and V3

0000H-007FH

0080H-00FFH
0100H-017FH
017FH-01FFH
16-bit addresses 0000 H to 01 FFH

00H-7FH
00H-FFH 00H-7RH 00H-FFH

Direct Address
7-bit addresses 00H to 7FH

Select a V-window write b6-b0

0013H
16-bit address 0013H

13H — When write
Direct Address
8-bit address 13H

Four V windows option 2

V-window V0

V-Window V1
V-window V2
V-Window V3
Write b6-b2 = 00100
Write $\mathrm{b} 1-\mathrm{b} 0=00$ or $01 \quad$ Write $\mathrm{b} 1-\mathrm{b} 0=11$ or 10

512 Bytes Page 0 and 1 addresses between 00H and FFH

- Bit b0 in WSR is written $=0$ or 1 for lower half of a V-window and bit $\mathrm{b} 1=0$ or 1 for upper half

Option 3

6-bit address at Pages 0 and 1 addresses

- A vertical window V0,... or V7 can be associated with a distinct code block among the eight code blocks
- Each block having maximum 64 bytes

6-bit address at Pages 0 and 1 addresses

- Pages 0 and 1 addresses between 00 H and FFH can be 256 B each in 8 Windows
- 6-bit address between 00 H to 3 FH can be assigned to $64 \mathrm{~B} \times 8=512 \mathrm{~B}$,
- Pages 0-1 are assumed to be eight vertical windows V0,... V7 of 64 B each

80x96 Vertical Windows, V0 to V7

0000H-003FH	00H-3PH Vo
0040H-0078H	40Н-7\%H
0080H-00BFH	80H-BFH
00C0H-00FFH	COH-7PH V3
0100H-013FH	00H-3FH
0140H-017PH	40H-7\%H V5
0180H-0108FH	80H-BFH
01C0H-01FFH	COH-7PH
16-bit addresses 0000 H to 01 FFH Pages 0-1 addresses	Direct Address 6-bit addresses $\mathbf{0 0 H}$ to 3 FH

Select a V-window write b6-b0

0013H
16-bit address
0013H
Write b6-b2 = 01000 Eight V windows option 3
V-window V0
V-window V2
V-window V4
V-Window V5

V-window V6
8-bit address 13 H
V-Window V7

Write b2-b0 $=000$ or 001 or 010 or 011
V-Window V3

Write b2-b0 = 100 or 101 or 110 or 111

Option 4

5-bit address at Pages 0 and 1 addresses

- Pages 0-1 8-bit address between 00H to FFH can be assigned to $32 \mathrm{~B} \times 8=512 \mathrm{~B}$
- Pages 0-1 assumed to be eight vertical windows V0,... V15 of 32 B each

5-bit address at Pages 0 and 1 addresses

- A vertical window V0,... or V15 can be associated with a distinct code block among the eight code or data blocks
- Each block having 32 bytes maximum

80x96 Vertical Windows, V0 to V15

0000H-003FH	00H-17H vo
0020H-003FH	20H-3FH
\uparrow	$\uparrow \quad \uparrow$
I	1 I
I	1 I
I	1 I
\downarrow	\downarrow
01C0H-010DFH	COH-DFH
01E0H-01FPH	EOH-FFH
16-bit addresses 0000H to 01FFH Pages 0-1 addresses	Direct Address 5-bit addresses 00 H to 1 FH

Select a V-window write b6-b0

0013H
16-bit address
0013H
Write b6-b2 = 10000
Sixteen V windows option 4

V-window V0
V-window V2
V-window V4
V-window V6
Write b3-b0 $=0000$ or $001 \ldots . .0111$

Direct Address

13H - When write

8-bit address 13 H

V-Window V1
V-Window V3
V-Window V5
V-Window V7
Write b3-b0 $=1000$ or 1001.... 1111

Addresses in 80x96

Summary

We learnt

- Page 0256 bytes between 00 H to FFH starting from 0000H
- Page 1256 bytes between 00 to FFH starting from 0100H
- Window select register to select an H-Window
- Window select register to select a V-Window

We learnt

- Four Horizontal Windows each accessed by 8bit address
- H0-read
- H0-write
- H1 read and write
- H15

We learnt

- Vertical Windows Four options- 2 or 4 or 8 or 16 V -windows
- Each address in a V-window accessed by 8, 7, 6 or 5-bit only when a V-window selected by write to WSR

End of Lesson 2 on H- and V- Windows

