Chapter 10

Programming in C

Lesson 08

C Programming Examples for Ports

Using all 8-bits of Port simultaneously

- 8051 four number 8-bit ports, P0, P1, P2, and
 P3
- Declared as unsigned character when all the 8-bits to be used then the data type of a variable used for assigning a byte to the port
- Ports P0, P1, P2, and P3 the SFRs

Preprocessor directive #include reg51.h

- Used to include a header-file for the registers (SFRs) in the source file
- Provides the related SFR declarations of the data type, addresses, pointers and operations during the compilation of the source file

Program to write 0x75 at port P0

- #include <reg51.h>/* Include header file for the registers and SFRs of 8051*/
- void main (void) /* main function */
- {unsigned char portByte; /* Declare variable portByte */
- portByte = 0x75; /* portByte variable is assigned the value= 01110101 */
- P0 = portByte;} /* P0 is assigned (written) the value of portByte */

Program to write 0x75 at port P0

- Compile Source file
- Run using a simulator
- Show that P0 become 0x75
- Show that the port P0 bits b7, b6, b5, b4, b3,
 b2, b1 and b0 show equal to 01110101

Connect LEDs with the port

- Through an interfacing circuit such that when a bit bn = 0, the corresponding LED is OFF and when = 1 then ON
- The 0th, 2nd, 4th, 5th and 6th LEDs become ON and 1st, 3rd and 7th LEDs will be OFF at P1 when the program is run

Program to complement all bits at port P1 Toggle all bits

- #include <reg51.h>/* Include header file for the registers and SFRs of 8051. */
- void main (void)
- { P1 = ~ P1; /* use P1 = ! P1 for the NOT operations on each bit, then the P1 is assigned the value of complement of P1 in new C99 ANSI compliant compiler */
- }

Results

• When the above program in a source file is compiled and run using a simulator, the simulator shows that P1 = NOT (P1). The port P1 bits b7, b6, b5, b4, b3, b2, b1 and b0 equals to complement of the earlier bits

LEDs Interfacing

- Assume an LED each connected through an interfacing circuit such that when bn = 0, the corresponding LED is OFF and = 1 then ON
- When this statement runs, all LEDs become = OFF if earlier they were ON and all those LEDs become = ON when this statement runs if earlier they were OFF at P1.

Using a Port bit individually

- 8051 four number 8-bit ports, P0, P1, P2, and P3
- Each port bit is also addressable
- Px^n refers to bit bn of Px and thus to pin
 Px.n state
- x = 0 or 1 or 2 or 3 and n = 0 or 1 or .or 6 or 7

Port bit

- P0^1 refers to bit b1 of P0 and thus to pin P0.1 state
- P0^1 refers to bit b1 of byte at address 0x80
- P0^1 also refers to bit at address 0x81

Program to write 0 at fourth pin of P2

- #include <reg51.h>/* Include header file for the registers and SFRs of 8051. */
- void main (void)
- {sbit portBit = P2^4;/*declare variable portBit address as the fourth bit address in SFR P2. */
- portBit = 0; /* Assign value = 0 at address of portBit */
- }

Results

- When the above program in a source file is compiled and run using a simulator
- Simulator shows that P2 bit 4 resets

Program to complement third bit of P3

```
#include <reg51.h>/* Include header file for the
  registers and SFRs of 8051. */
void main (void)
{sbit portBit = P3^3;/*declare variable portBit
  address as the third bit address in SFR P2. */
  portBit = ~portBit; /* portBit = !portBit in
  ANSI C99. Assign value = 0 at address of
  portBit if 1 else 1 if 0*/
```

Result

• When the above program in a source file is compiled and run using a simulator, the simulator shows that P3 bit 3 complements, 0 of 1 and 1 of 0 initially

Summary

We learnt

- Include header file for the Registers
- Programs for the port byte
- Programs for port bit set, reset, complement

End of Lesson 08 on

C Programming Examples for Ports