Chapter 8

Digital and Analog Interfacing Methods

Physical Parameter Sensors and MCU Based Instrumentation

Resistive sensors

Resistance sensor senses

- Temperature (RTD),
- Pressure (bismuth-telluride wire),
- Moisture (grain or rice or milk or coffee powder),
- Magnetic field (bismuth wire)
- Strain gauge(semiconductor)

Resistive sensors

• Sensor in one of the arm of Whetstone bridge

• Signal conditioner (plus a precision rectifier in case of a.c.signal) and Sample Hold (S/H) and

•ADC at MCU

Capacitance sensor

• Capacitance sensor senses resonance condition offsets when capacitance changes

• ADC analog input at MCU gives the dielectrics thickness or level in a reactant filled tank

Capacitive Sensor Application Examples

Capacitive Sensor Application to study paper thickness and its uniformity in a paper mill

• Placing dielectrics for example, paper near electrodes changes capacitance

Capacitive Sensor Application to reactants level measurement at a tank in a cement mill

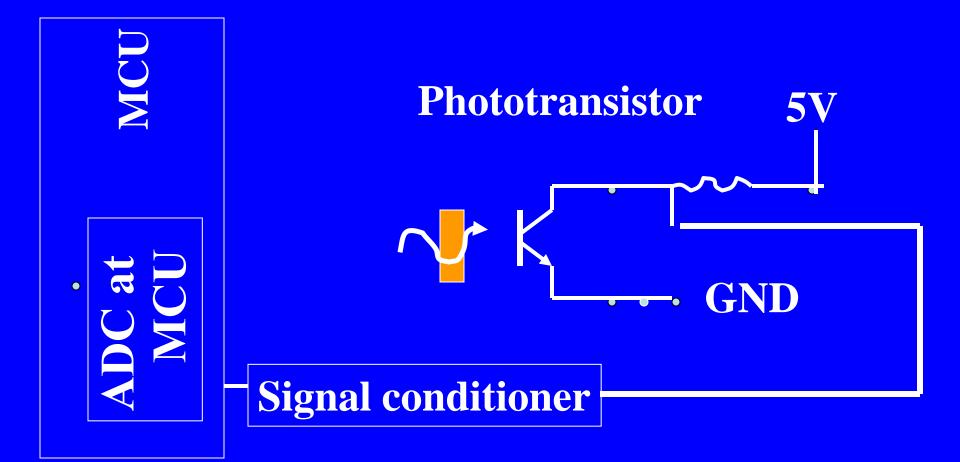
Inductance based Sensor (LVDT) Interface

Inductive sensor

• Use a single coil or a double coil like in an LVDT(pair of oppositely wounded coils)

• Senses induced currents sense or currents imbalance at a transformer

Inductive Sensor Application Examples


•Metal foil thickness measurement

Current based (Light level) Sensor Interface

Optical Sensors

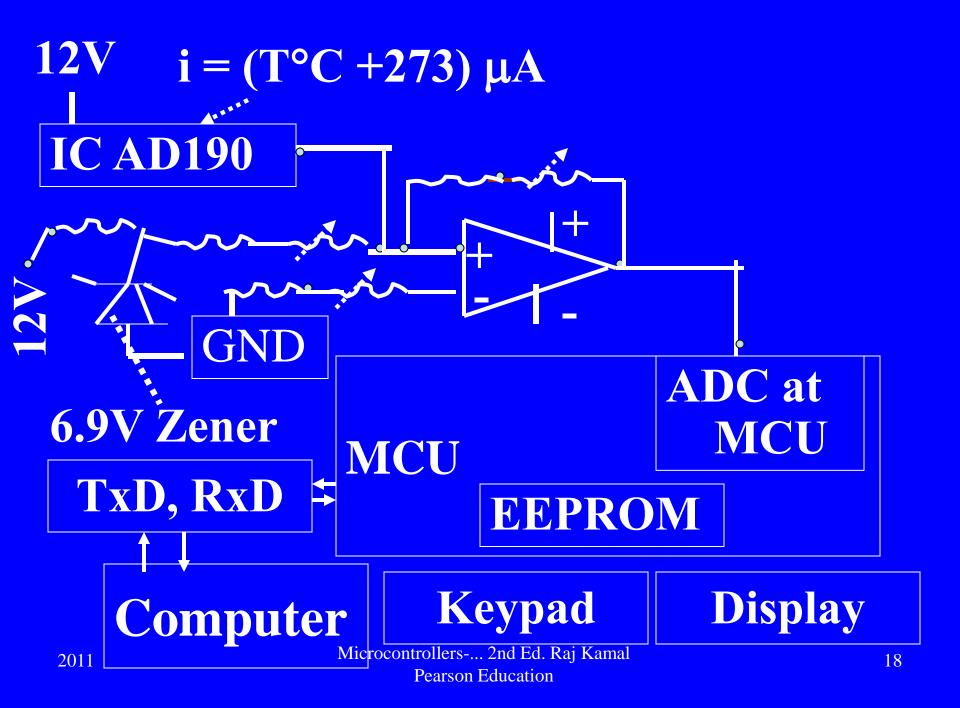
Phototransistor senses light levels ADC at MCU notes the ambient light levels

Light Level sensor Circuit

Temperature Sensor Interface

NTC and PTC

Resistance sensor


• NTC (Negative Temperature Coefficient) Decrease in R with increase in T (Semiconductor Oxide)

• PTC (Positive Temperature Coefficient) Increase in R with increase in T (Metal Alloy or Platinum wire)

IC based Temperature Sensor

• AD590 an IC to measure temperatures between 0°C and 100°C.

 Saturation current is proportional to temperature in Kelvin

Temperature Sensor Interface

Linearity considerations

•ADC measured value P is proportional to the measured parameter x by the following linear equation. $P = a_0 + a_1 x$

Non-Linearity considerations

•ADC measured value P is not proportional to the measured parameter x by the following linear equation. $P = a_0 + a_1 \cdot x + a_2 \cdot x \cdot x^2 + a_3 \cdot x^3 + a_4 \cdot x^4$ +

Linearity and Non Linearity Lookup Table

The non-linearity effects can be taken into account by using a lookup table that is stored at the flash memory in the MCU.
Flash stores the verified physical parameter value vs. the observed ADC input.

Linearity and Non Linearity considerations

• Also a computer program calculates the offset, proportionality coefficient and non-linearity coefficients and saves in flash. Then it re-programs the parameters in the flash memory when re-calibrating the instrument and regenerates lookup table

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

We learnt

- Whetstone bridge
- Resistance, capacitance or inductance or current changes noted using signal conditioner, precision rectifier, samplehold amplifier and MCU-ADC Lookup table and coefficients for accounting offset, proportionality and nonlinear coefficients

End of Lesson 17

Physical Parameter Sensors and MCU Based Instrumentation