Chapter 8

Digital and Analog Interfacing Methods

Lesson 11 Part f

Interface for generating Analog Outputs for Servomotor control using Pulse Width Modulation

Pulse width modulation

1. A Pulse width modulated output obtained using a digital number x.

- 2. A analog output is obtained by integrating the Pulse width modulated pulses.
- 3.Pulse frequency is proportional to clock input frequency to a n-bit pulse accumulator
- Pulse-width of modulated pulse is proportional to value (2ⁿ−x) when x is loaded into a modulation register.

Pulse width modulation

5. The analog output is proportional to $\pm (2^n - x)$ where value x loads into PWM register.

6. The number x generates output as if it is obtained by a DAC function.

7. Modulation $\% = \pm$ Period for pulse width is '1' divided by Total period of pulse at 1 and at 0 multiplied by 100.

PWM output

- x = digital number in an n-bit PWM register
- PWM output bit = 1 for period T1
- PWM output bit = 0 for period T2
- T1 $\alpha \pm (2^{n-1} x);$
- T2 α (*x*);
- $(T1 + T2) \alpha (2^{n-1})$, where
- V Output of integrator α k.(T1)/(T1+T2)
- k is integration constant

8-bit PWM example

- When x in PWM register = all 0s = 00000000 (=0d). Let pulse-width T1= 0 ms, and T1+T2 = $128 \times 5 \ \mu s = 0.64 \ ms$
- x=01000000 (= 64d) generate output width T1 = 0.32 ms, when register countinput pulse periods equal (0.32/64) ms = 5 μ s
- x = 11111111 (= 255d) generate width T1 = 0.6325 ms.

PWM output

Analog output V α +[(2ⁿ - x)] and T1 programmed between 1.0 ms to 2.0 ms Positive T1

T2

Analog Outputs Interfaces

- PWM plus Integrator
- PWM output to integrator-1 for servomotor angle control
- When x values such pulse width = 1 ms or 1.5 ms or 2 ms to coil C' with pulse period = 20 ms.

Analog Outputs Interfaces

- 0° angle change when pulse width is 0.5 ms
- -90° angle x values such pulse width
 = 1 ms
- + 90° angle x values such pulse width
 = 2 ms
- Angle between 90° and + 90° when pulse width is between 1 ms and 2 ms.

Integrator PWM output for current, speed and direction control of d. c.

10

Servomotor at Neutral 0° position

Servomotor at -90° reversed position

Servomotor at +90° forward position

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education Servomotor rotate angle

PWM outputs at 20 ms Intervals

PWM output = 1 period vs. rotated angle

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

Summary

We learnt

- Analog Outputs is obtained after integration of pulse width modulated output
- Pulse width of the modulated pulses is proportional to value loaded in pulse width modulation register
- Pulse frequency is proportional to clock input frequency to pulse accumulator
- x can be programmed such that analog outputs obtained as a function of x for the width period 1 ms and 2 ms for angles between $\pm 90^{\circ}$

End of Lesson 11 Part f

Interface for generating Analog Outputs for Servomotor control using Pulse Width Modulation