Chapter 8

Digital and Analog Interfacing Methods

Lesson 11 Part 6

Interface for generating Analog
Outputs for dc motor and speed
and direction control using Pulse
Width Modulation

Pulse width modulation

- 1. A Pulse width modulated output obtained using a digital number x.
- 2. A analog output is obtained by integrating the Pulse width modulated pulses.
- 3. Pulse frequency is proportional to clock input frequency to a n-bit pulse accumulator
- 4. Pulse-width of modulated pulse is proportional to value $(2^{n-1}-x)$ when x is loaded into a modulation register.

Pulse width modulation

- 5. The analog output is proportional to $\pm (0.5 x)$ where value x loads into PWM register.
- 6. The number x generates output as if it is obtained by a DAC function.
- 7. Modulation $\% = \pm 0.5$ of Period for pulse width is '1' divided by Total period of pulse at 1 and at 0 multiplied by 100.

PWM output

- x = digital number in an n-bit PWM register
- PWM output bit = 1 for period T1
- PWM output bit = 0 for period T2
- T1 $\alpha + (2^{n-1} x)$;
- T2 α (x);
- $(T1 + T2) \alpha (2^{n-1})$, where
- V Output of integrator α k.(T1)/(T1+T2)
- k is integration constant

8-bit PWM example

- When x in PWM register = all 0s = 00000000 (=0d). Let pulse-width T1= 0 ms, and T1+T2 = $128 \times 5 \mu s = 0.64 ms$
- x=01000000 (= 64d) generate output width T1 = 0.32 ms, when register countinput pulse periods equal (0.32/64) ms = 5 μ s
- x = 11111111 (= 255d) generate width T1 = 0.6325 ms.

Analog Outputs Interfaces

- PWM plus Integrator
- PWM and inverse of PWM output to integrator-2 for d.c.motor speed and direction control
- Speed controls by $\pm (2^{n-1} x)$
- On-Off control by two NAND gates second input
- Direction controls by $x > 2^{n-1}$ or $x < 2^{n-1}$

Integrator PWM output for current, speed and direction control of d. c. motor

Pearson Education

Summary

We learnt

- Analog Outputs is obtained after integration of pulse width modulated output
- Pulse width of the modulated pulses is proportional to value loaded in pulse width modulation register
- Pulse frequency is proportional to clock input frequency to pulse accumulator
- Integrator can be designed such that + or or both and $_+$ analog outputs obtained as a function of x between $_+(2^{n-1}-x)$

End of Lesson 11 Part e

Outputs for dc motor and speed and direction control using Pulse Width Modulation