Chapter 8

Digital and Analog Interfacing Methods

Lesson 11 Part b

Thermocouple Temperature Measuring Interfaces

Whetstone Bridge

- Assume V_T is emf generated at hot junction of thermocouple at temperature T.
- Assume V_{T0} is emf generated at the cold
- junction of thermocouple at temperature T0

Whetstone Bridge

- All four arms Resistances equal and T = T0 and thus $V_T = V_{T0}$
- Thermocouple at reference temperature and the bridge is balanced
- Output = 0V for any analog input when bridge is balanced

Whetstone Bridge

- Bridge is not balanced when T not equal to T0
- Output not = 0V for a non-zero emf generated and bridge is not balanced
- All four resistances are of the same order, bridge gives maximum sensitivity

Signal Conditioner

• Given a compensating reference input to compensate for variation in cold junction reference temperature with respect to 0°C. • If reference temperature not = $0^{\circ}C$ then compensation for variation in room temperature at the cold junction required. • Compensating reference input is generated by a thermistor or RTD circuit.

Signal Conditioner

 Compensating input and design is such that output obtained = 0 V for input to ADC when hot junction temperature is at 0°C and ADC output is then 00000000. • For obtaining reference Voltage input V_{ref} to ADC when temperature or pressure is at certain maximum limiting value and ADC output is 11111111.

TxD and RxD Interface to Computer

• Keypad for entering the sample name, physical parameter name, time and date of measurements and other features

• Computer provides from a table calibration parameters α_{tc} and β_{tc} for the given thermocouple and saves in EEPROM

TxD and RxD Interface to Computer

• Computer records permanently the readings at different instances

• Gives graphical presentation of variation of temperature with time, shows set point for the temperature

Summary

We learnt Analog Inputs from thermocouple hot junction

- Whetstone bridge and cold junction temperature change compensation
- Signal conditioning amplifier and S/H circuit

We learnt Analog Inputs from thermocouple hot junction

- MCU ADC input
- Gives graphical presentation of variation of temperature with time, shows set point for the temperature

End of Lesson 1 Part b

Thermocouple Temperature Measuring Interfaces