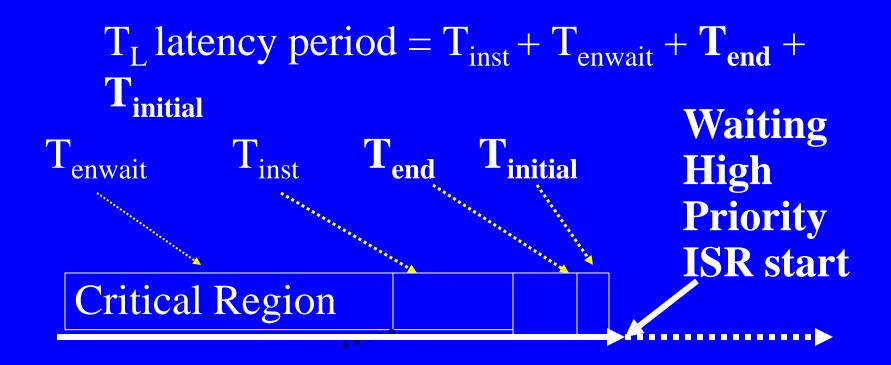
Chapter 6

PROGRAMMING THE TIMERS

Lesson 4


Interrupt Service Intervals and Densities

Interrupt Service Latency

Case 1: Assumption No higher priority interrupt pending than present

- 2. Longest instruction execution period, T_{inst}
- 3. Wait for interrupt enabling, T_{enwait}
- 4. Ending Period, T_{end}, time taken in reassigning priorities, enabling and retrieving stack (context)
- 5. T_{initial}, Initial actions time, for disabling interrupt, and saving context

$$T_L$$
 latency period = $T_{inst} + T_{enwait} + T_{end} + T_{initial}$

Case 2: Assumption higher priority than present interrupt pending

- Worst case T_L latency period = $T_{inst} + T_{enwait} + T_{end} + T_{initial} + T_H$;
- T_H = High priority ISR execution time

Interrupt Service Interval

Case when Current ISR must finish and higher priority interrupt pending

 T_L latency period = $T_{inst} + T_{end} + T_{initial}$

 T_{exec}

Waiting
High
Tend Tinitial Priority
ISR start

Current ISR Execution

Interrupt density and constraint

T_i/T_p =Fraction of time by CPU spent for specific ISR service with respect to period of re-occurrence of the service

Interrupt density = sum of T_i/T_p for all ISRs

Interrupt Constraints

Interrupt density < 1

Summary

We learnt

- Interrupt Service Interval
- Latency
- Worst Case Latency for an Interrupt Service
- Interrupt density
- Interrupt constraint