Chapter 6

PROGRAMMING THE TIMERS

Programmable Timer-Counter Device

Timer Pre-scaling 8051 T0 in Mode 0 Example Pre-scaling of TH0 by 32 through TL0

Count Inputs from internal clock or from pin T1

68HC11 TCNT (Time-Counter) Example

16-bit counter

Pre scaling of Eclock inputs by PR0-PR1 bits programmable as 1, 4, 8 or 16 with in 64 clock cycles on power up reset

5

Count Inputs from internal Eclock 2 MHz for 8 MHz

Example- 68HC11 TCNT

Let XTAL clock = 8 MHz,therefore counter clock-input period = 0.5 μs.
Let Pre-scaling factor programmed = 8
Therefore, clock-inputs to TCNT at each 8×0.5 μs = 4 μs interval

• When TCNT = 1FA0H,then after 4×16 µs TCNT reading will be will be 1FB0H; after next 1024 µs, 20B0H.

Timer-Counter Reset to 0000H

8051/52 16-bit Counters Resetting

- Timer-counter T1 resets on on writing 00H-00H at TH1-TL1 or on T0 overflow
- Timer-counter T0 resets on writing 00H-00H at TH0-TL0 or on overflow of T0
 - Timer-counter T2 resets on writing 00H-00H at TH2-TL2 or on overflow of T2

68HC11 16-bit Counters Resetting

• Timer-counter T1 resets on TCNT overflow

68HC11 TCNT Overflow example

16-bit counter

Example

Timer overflow interrupt if not masked. an ISR executes Overflows after 2¹⁶ inputs after each $2^{16} \times p$ \times 0.5 µs from instance when count bits all 0s

Clock Inputs period = $0.5 \ \mu s$ for 8 MHz XTAL, pre-scaling factor set = p = 1 or 4 or 8 or 16

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

8051 Timer-Counter Start/Stop

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

Timer-Counter start, stop and reset

- Finding time interval between two events.
- Finding period of a pulse at a port pin
- Find time taken for a motor for 1 or more revolutions

• Reset timer <u>T</u> counts = 0, and mode set for internal clock-inputs. On first event, start <u>T</u> and second event stop <u>T</u>.

8051 TH0-TL0 Mode 1

- Let XTAL clock =12 MHz,therefore counter clock-input period = 1 μ s.
- Let Mode T0 is $C/\overline{T} = 0$ (internal clock mode)
- Let T0 be programmed in mode 1 (TH0,TL0) 16-bit counter.

• WhenTR0 is set, timer T0 starts and TR0 reset T0 stops.

8051 T1 in Mode 1 Example

16-bit counter

Count Inputs from internal clock or from pin T1 0 or 1 at External gate pin INT1 and 1 or 0 TR1 together starts/stops when programming of T1 is like that else set/reset of TR1 only starts/stops as per programming.

8052 T2 Example

16-bit counter

1. External CP/RL2 for counter reload on overflow if EXEN2 bit set

2. TR2 bit set/reset programmed to start/stop.

Count Inputs from internal clock or from pin C/T2 as per programming of T2

68HC11 Timer-Counter Nonprogrammability except for Prescaling or counting rate setting

8051 Timer-Counter Loading and Reload

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

TH1 is first written the counts, x0. TL1 autoreloads x0 from TH1 on each overflow.

Count Inputs from internal clock or from pin T1

8052 T2 Example

16-bit counter

Load by writing x at TH2-TL2. TH2-TL2 overflows after $(2^{16} - x)$ inputs

21

Count Inputs from internal clock or from pin C/T2 as programmed

8052 T2 Example

16-bit counter

External CP/RL2 for counter reload if EXEN2 bit set. Reloads from the TH2-TL2 registers

Count Inputs from internal clock or from pin C/T2 as programmed

Internal clock input rate/ Prescaling factors 68HC11 TCNT only programmable Example 16-bit counter Read Only TCNT No loading of TCNT, No resetting by **Count Inputs from internal** writing 0000H clock. into TCNT.

An overflow delay two or four or eight times when pre-scaling factor = 2 or 4 or 8

Overflow after a Period

Example- 8051 TH1-TL1 Mode 1

- Let XTAL clock =12 MHz,therefore counter clock-input period = 1 μ s.
- Let Mode T1 is C/\overline{T} , internal clock mode
- Let T1 be programmed in mode 1 (TH1,TL1) 16-bit counter.

• WhenTH1-TL1 written (loaded) E0H-01H then timer T1 will timeout and overflow after 1FFFH inputs.

Example- 8051 TL0 Mode 2

- •Let XTAL clock =12 MHz,therefore counter clock-input period = 1 μ s.
- •Let Mode T0 is C/T ,internal clock mode
- Let T0 be programmed in mode 2; TL0 loads counts from TH0, TL0 runs as 8-bit counter.

• WhenTH0 (loaded) E0H then timer T0 uses TL0 and will timeout and overflow after each 20H inputs (= $32 \mu s$) as TL0 reloads also from TH0 on overflow.

Program for finding the Time Interval of Counting in 8051/52

One Timer as Timer and other as counter

Counter-timer device 1 programs the Timer for counting time interval in timer mode

When device 1 starts, the counter mode timer-counter device 2 also starts counting.

When device 1 overflows (timeouts), the ISR stops the device 2 counting.

Example- 8051 TH0-TL0 Mode 3

Let XTAL clock =12 MHz,therefore counter clock-input period = 1 μ s.

Let Mode T1 is C/T1=1 for count mode TH0 and mode T0 is is C/T0=0 for timer mode TL0

Let T0 programmed in mode 3. TH0-TL0 independent counters and TL0 be written 7DH, to set the interval to (100H-7EH) = 83H = 131µs for timeout and overflow.

8051 TH0-TL0 Mode 3

Step1: Set TR0 = 1, reset TH0 = 00H Step 2: Run TH0 by setting TR1 =1, so that TH0 starts counting from 00H.

Step3: TL0 overflows and interrupts after counting interval = 131 μ s, the ISR resets TR1 = 0, it stopsTH0.

TH0 will gives the count pulses at C/T1 pin received in 131 μ s.

Timer-Counter Overflow Events

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

Example of

Timer-Counter Overflow Event

• Timer-counter T1 mode1 on overflow after one input from FFFFH and new reading = 0000H at TH1-TL1 Masking Interrupt Service on Timer-Counter Overflow Event

- T0 or T1 or T2 or TCNT overflow interrupt maskable
- If masked, no interrupt service routine executes on overflow

8051 TL0 timer mode 2 example

8-bit counter

 $\therefore Example$ $\therefore Clock Inputs period = 1 \ \mu s$ for 12 MHz XTAL

Timer overflow interrupt if it is not masked, an ISR executes **Overflows** after 256 inputs in 256 us if initial count bits all 0s.

68HC11 TCNT example

• Example

16-bit counter

Clock Inputs period = 1/2 μs for 8 MHz XTAL, prescaling factor set = 1

Timer overflow interrupt if not masked. an ISR executes **O**verflows after 2¹⁶ inputs in $2^{16}/2 \ \mu s$ from count bits all 0s.

Example- 8051 TH0 Mode 3

Let XTAL clock =12 MHz,therefore counter clock-input period = 1 μ s. Let Mode T1 is C/T,internal clock mode

Let T0 programmed in mode 3. TH0-TL0 independent counters and TH0 be written 81H.

When THO starts by setting TR1 = 1, Over-flow will be after (100H-81H) = 127 μ s

Preset time interval ON-OFF of a unit

• Load timer \underline{T} counts = x, and mode set for internal clock-inputs. Start \underline{T} . switch ON and on over flow interrupt, switch OFF.

• Application- Output change (s) for a pre-fixed interval

Preset long time interval on-off of a unit

Load n-bit timer \underline{T} counts = x, define number of overflows = k, mode set for internal clockinputs. Switch on an output, Start \underline{T} and on overflow interrupt, reload the counts on 1 to $(k-1)^{\text{th}}$ overflows and switch off the output on k^{th} over flow interrupt.

Delay = $k.(2^n - x).x.p.t$, where t = clock input period, p = pre scaling factor

Exemplary Applications

- Moving robot arm for a defined period.
- Output change for a pre-fixed interval
- Current output for a fixed interval
- A microwave oven ON for a fixed interval

Finding a long time interval between two events

Reset timer \underline{T} counts = 0, and mode set for internal clock-inputs. On first event, start \underline{T} and till second event, find *k* the number of overflows and on second event stop \underline{T} .

Exemplary Applications

Find time taken for a weight-lifter to lift Find time taken for an input event change

Time interval

Time interval = $[(2^n.k) + x1].p.t$, where t = clock input period, p = pre scaling factor, x1 = final counts at the n-bit at <u>T</u>.

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

we learnt

Two types of timer-counter devices -

- Start, stop, reset and preloading a count programmable
- Free running timer-counter: start, stop, reset and preloading counts *x*, each one is not programmable

We learnt

Pre-scaling of timer-counter device -

- Programmable in TCNT 68HC11
- Programmable as 32 in mode-0 at T1 or T0 in 8051
- Pre-scaling extends the overflow rates and extends the increment interval of counts by pre-scaling factor

We learnt

Loading of timer-counter device -

- Not Programmable in TCNT 68HC11
- Programmable in T0, T1 or T2 at 8051

we learnt

- Overflow interrupt(s) of timer-counter device -
- Initiate an action
- Initiate an action after pre-fixed number of overflows