Chapter 3

8051/8031 Family Architecture

Lesson 4

T1 Timer/Counter T0 Timer Counter T2 Timer Counter (8052)

A Timer

Timer— a counter getting constant interval periodic inputs from a clock source

Timer overflow interrupt if not masked, then an ISR executes

Overflows after 2ⁿ clock inputs if initial count bits all 0s.

Counter— a timer getting irregular interval inputs from the events at a source

A Counter Example

n-bit counter

Example

Count Inputs from a source on the events of wheel completing revolution Counter overflow interrupt if not masked, then an ISR executes

Overflows after 2ⁿ count inputs if initial count bits set = all 0s.

<u>8051/8052 Timing/Counting Devices –</u> T1 and T0 and T2

Timers T1 and T0 and overflows, masking and priorities of their interrupts

Overflow transition to all bits TF1 and TF0 bit at = 0s from all 1s **TCON.7** and **TCON.5** and the TF T1/T0 Timer/Counter resets on an ISR start Features: Stop, Reload, **Internal clocking and External** event-inputs ET1 at IE.3 = 1 in IE SFR enables T1 interrupt. **ET0** at IE.1 = 1 enables T0 interrupt.

T1/T0 can gets inputs from external inputs. T1/T0 can be externally gated to run T1/T0 can be stopped, Can be written for load. Can be read on instruction for move, store or add or other executes. Inputs period = $1 \mu s$ for 12 MHz XTALwhen internal timer clocking mode is used.

1. T1/T0 Increments by -ve edges when TR1/TR0 written = 1 at TCON.6/TCON.4, respectively

2. Event counter T1 and T0 gets count inputs from T1 and T0 pin (P3.5 and P3.4) or from the system Internal clock

3. PT1 at IP.3 = 1 enables priority high for T1 interrupt. PT0 at IP.1 = 1 enables priority high for T0 interrupt.

Timer-Count T2 SFRs

Timer2 Six Functions T2 Counts 16-bits **T2 Reloads Input Captures** the preset T2 16-bits at value again **SFRs RCAP2H** on overflow and RCAP2L on and restart an external input edge

TCLK **RCLK** Counter 16-bits Loads from the SFRs **RCAP2H** and **RCAP2L**

Timer capture interrupt if not masked, then an ISR executes

4 :

An edge forcing copying of the counter reading into Capture **Register if capture enabled**

A Reload of Counter on an input

16-bit counter

Count Inputs

16-bit Load Register Timer reload interrupt if not masked, then an ISR **executes**

An edge forcing copying of the into counter starting value from Load Register if capture enabled

Reload-Capture T2 SFRs

Modes 0, 1, 2 and 3 8051 timers

Using TimerT1

Write 4 bits for mode/control in 8-bit TMOD for the for the timerT1

<u>Using TimerT0</u> Write 4 bits for mode/control bits in 8-bit TMOD for the timerT0

Timer-counter T1

8- bits TH1

16- bits TH1-TL1 no prescaling 8- bits

Mode 0 Mode 1 Mode 2

TH1 counts after pre scaling by factor of 32

Pre-scaling means the counts or clock-inputs divide by 32 before TH1 gets the inputs.TL1 does prescaling

TI1**TL1 counts the** count/clock inputs. TL1 loads counts from TH1 on start and on each overflow

Timer-counter T1

Mode 3 case of T0

•T1 overflow interrupts stopped (frozen) as TH0 functions as 8-bit timer-counter overflows in place ofT1

•TL0 functions as 8-bit timercounter T0 and overflows

.T1 can continue to generate TCLK and RCLK for the serial interface

16- bits Timer-counter T0 THO-TLO no pre-8-bits THO scaling 8-bits Mode 2 Mode 1 Mode 0 **TLO TL0 counts the THO counts after pre** count/clock scaling by factor of 32 inputs. TL0 **Pre-scaling means the** loads counts counts or clock-inputs from TH0 on divide by 32 before TH0 start and on gets the inputs.TL0 does each overflow prescaling Microcontrollers-... 2nd Ed. Raj Kamal

Pearson Education

Timer-counter T0

Mode 3 case of T0

• TH0 functions as 8-bit timercounter overflows in place of T1 and uses TF1 and TR1

•TL0 functions as 8-bit timercounter T0 and overflows and uses TF0 and TR0 GT1 bit = 1 disables T1 gate1 pin input GT1, T1 runs only by TR1 bit set = 1.When bit = 0, T1 run enables after gate1 pin input = 0 after the TR bit is set

GT0 bit = 1 disables T0 gate0 pin input GT0, T0 runs only by TR0 bit set = 1.When bit = 0, T0 enables run after gate0 pin input = 0 after the TR bit is set Define disable/enable T1/T0 gate input

Defining T1/T0 as counter or timer

C/T1 bit = 1 disables internal clock inputs, **T1** runs by external count-inputs at **T1 pin.When bit = 0, enables internal clock** inputs to T1, disable T1 pin inputs C/T0 bit = 1 disables internal clock inputs, T0 runs by external count-inputs at T0 pin.When bit = 0, enables internal clock inputs to T0, disables T0 pin inputs.

Timers' control

TCON: T1-T0 Control and status SFR

Timer overflow Flags TF1-TF0 for the T1andT0 overflows

TCON.7 and TCON.5 show the flag statuses

TCON: T1-T0 Control and status SFR

Timer Run control TR1-TR0 for T1andT0 run

TCON.6 and TCON.4 control the running of T1-T0

External Interrupts ' control

External Interrupt Enable SFR

IE0 bit = 1 at TCON.0 enable interrupt and = 0 disables at INT0 (GT0) pin

IE1 bit = 1 at TCON.3 enable -ve edge transition interrupt and = 0 enables level 0 interrupt at INT1 (GT1) pin

Enable/disable Interrupt at INT0 /INT1 pin

Defining Interrupt type at INT0/INT1 pin

IT0 bit = 1 at TCON.0 enable -ve edge transition interrupt and = 0 enables level 0 interrupt at INT0 pin

IT1 bit = 1 at TCON.2 enable -ve edge transition interrupt and = 0 enables level 0 interrupt at INT1 pin

Flags **TF2-**EXF2 at bit7-bit6

C8H

Bit Addresses C8H-CFH Write/Read

TR2 at bit 2 = 2 runs the T2

T2CON 8-bit SFR CP/RL2 bit0, **EXEN2 bit3**

> bit5-bit4 set then define the RCLK-**TCLK for SI baud** rates using T2 else **T1 defines baud**

ntrollers-... 2nd Ed. rate Pearson Education

Defining T2 as counter or timer C/T2 bit = 1 at T2CON.1 disables internal clock inputs, T2runs by external countinputs at T2 pin. When bit = 0, enables internal clock inputs to T2, disable T2 pin inputs

Timer overflow Flag TF2 for T2 overflow

T2CON.7 shows the flag status

EXEN at T2CON.2 enables external input capture or reload by -ve edge at P1.1 T2EX/INT2 pin

Timer Capture Flag EXF2 = 1 a -ve edge at P1.1 pin forces the T2 reload from RCAP2H-RCAP2L provided EXEN control bit is 1 and when CP/RL2 (T2CON.0) = 0 (defined for reload)

Summary

We learnt Timer DevicesT0 and T1

- T0 functions in 4 modes
- T1 functions in 3 modes

Four modes are 8-bit mode with prescaling by 32, 16-bit mode, 8-bit auto reload mode and two independent 8-bit timers mode

We learnt

Timers T0, T1 and T2 Actions

- T0, T1 and T2 overflows and interrupts
- T2 captures 16-bit T2 in RCAP2H-RCAP2L on a reload input
- T2 reloads 16-bit from RCAP2H-RCAP2L on a reload input
- T2 controls RCLK-TCLK in place of T1 for SI device