Chapter 3

8051/8031 Family Architecture

8051/8031Architecture overview

<u>CPU Feature and Special</u> <u>Function Registers</u>

8051 Special Function Registers

- CPU (<u>A</u>, <u>B</u>, <u>SP</u>, <u>PSW</u>, <u>DPL</u>, <u>DPH</u>)
- Registers associated with the, Internal-devices, Ports

CPU Registers

- 8- bit <u>A</u> (Accumulator) Register
- 8-bit <u>B</u> Register
- 8- bit <u>PSW</u> (Processor Status Word)
- 8-bit Stack Pointer <u>SP</u>

CPU Registers Common Uses

<u>A</u> as Accumulator in instructions

- <u>B</u> for MUL and DIV
- <u>PSW</u> for Processor Status Word for flag bits and register-bank selection bits
- <u>SP</u> for stack at internal memory

Pointer 16-bit Registers

- 16-bit Program Counter <u>PC</u> to point to instruction byte in program memory
- 16-bit Data Pointer <u>DPTR</u> points a byte in external data memory
- <u>DPTR</u> two bytes in DPH and DPL SFRs

Execution Unit- ALU

Execution Unit

• Instructions have **8** -**bit** data types

		PSW	
PSW.0	Р	Zero flag	= A11 Os
PSW.1	F1	User Flag1	
PSW.2	OV	Overflow flag	
PSW.3	RS0	Register bank select bit0	
PSW.4	RS1	Register bank s	select bit1
PSW.5	FO	Flag 0 of user	
PSW.6	AC	Auxiliary Carry	
PSW.7	С	Carry flag	

Default value = 0000H

Not an SFR

PC

Increases by 01H for next instruction fetch

Internal bus

Control memory micro codes based -Implementation

MCU Architecture overview

Buses and Cycle Time

- 8-bit and 16-bit internal buses separate for data memory and SFRs, and program memory
- 16 bit address and 8 bits external data buses to program and data memoy
- 12 MHz XTAL- Clock rate 1MHz,
 1 μs single instruction cycle time.

- 8051 separate 16-bit internal bus for the 16-bit addressing and separate 8-bit data bus
- Harvard architecture bus
- Bus interface for 16-bit/8-bit address, data and instructions.
- Two Maskable Interrupt requests INT1 at P3.3 Interrupt and INT0
- PC initialization 0000H

Internal and External Buses

Internal Devices

Timers T0 andT1 timer with reset, internal/external clocking inputs and load/auto reload
A watchdog timer

Internal Devices

 Serial Interface SI-option UART full duplex or half duplex serial synchronous bits with separate clock bits

Control and Sequencing Circuit

Special Function Registers (SFRs) and Internal RAM

- SFR A, B, PSW bytes also have the 8-bit address for each bit like an internal device or port
- An SFR address space is distinct from an Internal RAM address.Byte at SFR has an 8-bit address. Select bits at SFR and select bits at internal RAM are individually addressable Microcontrollers-... 2nd Ed. Raj Kamal

Pearson Education

Bit-Addresses		<u>PSW</u>	$\mathbf{D} \in 1 + 1$
D7H	PSW.7	PSW.7	Default value = All 0s
D6H	PSW.6		
D5H	PSW.5		Byte
D4H	PSW.4		Address
D3H	PSW.3		= D 0H
D2H	PSW.2		PSW.7-PSW.0
D1H	PSW.1		
D9H	PSW.0	PSW.0	
2011		ocontrollers 2nd Ed. Raj Ka	amal 24

Pearson Education

llers-... 2nd Eu. Kaj Kamai Pearson Education

2011

Default value = 07H

SFR Address – 81H Increases by 01H before push, decreases after pop by 01H

• Separate 64 kB External data Memory

EA, ALE, PSEN

- EA is made 0 by user to enable use of external program memory space in place of the internal program memory space
- Control signal ALE = 1 to enable latching of address A0-A7 bits from AD0-AD7
- Control signal **PSEN** = 0 to enable read of program memory bits from external program memory Microcontrollers-... 2nd Ed. Raj Kamal 33

Oscillator Circuit, Supply circuit

Push button for manual reset

2011

Summary

- 8051 family 8-bit processor
- <u>PC</u>, <u>SP</u>, PSW
- Harvard architecture
- 8 bit data types
- Little endian 16-bit word alignment
- Interrupts Maskable Interrupt requests (INT0, INT1)
- PC 0000H at reset

- Internal SFR Addresses-IO/Devices Control and Status SFRs, SP
- Internal RAM Addresses
- Internal and External ROM addresses
- External RAM addresses

Internal Devices

- T0 and T1
- SI
- WDT

Pins

- Port P0 with option of AD0-AD7
- Port P1
- Port P2 with option of AD8-AD15,
- Port P3 with options WR, RD, T1, T0, INT1/GT1, INT0/GT0, TxD/CLK, RxD/Data

Pins

- VDD and VSS
- XTAL1and XTAL2
- EA, ALE, PSEN, RST