

# **Overview of Architecture and Microcontroller-Resources**



# Synchronous and Asynchronous— Serial Communication

Port P0 Port P1 Memory ROM,

#### Microcontroller-resources Port P2 Port P PWM **ADC Timers R**TC **WDT**

Internal **Internal Data Memory RAM** Program

EPROM, EEPROM, Flash

#### Serial **Interface** (SI)

**Synchronous** mode UART mode



### Serial Transmission

- For each character or byte, in place of 8 bits simultaneously to a port, a stream of 1s and 0s is sent at prefixed intervals on a data line or port, called serial data line or serial port
- Interval = T, Serial Bits transmission rate =  $T^{-1}$  bps (bit per sec).

#### Serial Transmitter output 8 bits (01000100)



T = Interval between the bits set by transmitter clock

Time

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

### Advantages

- Only one line per channel suffices
- Os and 1s can be appropriately modulated for long and remote distances communication and for high frequency transmission

#### **Serial Receiver input 8 bits (01001100)**



Time

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education Receiver clock synchronization with transmitter clock

- Os and 1s can be appropriately modulated with the clock signals for remote receiver to synchronize receiver clock with the transmitter clock, or
- A transmitter clock can also be explicitly sent separately along with a serial line for receiver to synchronize receiver clock with the transmitter clock, or

Receiver clock synchronization with transmitter clock

 The serial bits for a byte can precede the bits for a synch-code, and synch-code bits synchronize the receiving clock using the phases and intervals of these bits, or Receiver clock rate adjustment with Transmitter Clock rate

• The serial bits for a byte can precede a start bit and succeed a stop bit and receiver clock adjusts the interval T with the start bit-intervals

#### **SI Device Data Read/Write Example**



#### **Serial Interface Device SI**

#### **Serial Interface Device SI**



## SI Device control Bits write or status read at register SCON



Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

## Synchronous Mode Advantage

# • Fast transmission, usually at the system (MCU) clock rates.

## Synchronous Mode Advantage

- Serial bit transmits at data pin and receives at slave data pin
- Synchronous SI Master device simultaneously transmits serial clock pulses so that slave can synchronize the clocking inputs with the serial data bits.

Serial Interface SI Receiver Synchronization with transmitter clock

• A transmitter clock is explicitly sent separately along with a serial line for receiver to synchronize receiver clock with the transmitter clock,

#### **Synchronous SI Master- Slave Connection Between Two MCUs**



#### Synchronous SI Device Data Read/Write Example

**SI** data 8-bits Receiv data in at **P3.0** Clock in at **P3.1** 



**SI** data 8-bits **Transmit** data out at **P3.0** Clock out at **P3.1** 

# Synchronous SI Master output 4 bits (0100) and Clock pulses



#### lsb serial bit first out from SBUF

#### Serial Transmitter output 8 bits (01000100)



T = Interval between the bits set by transmitter clock

Time

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education



Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

# Serial bit SI UART mode transmits at TxD and reception at RxD pins

Receiver clock rate adjustment with Transmitter Clock rate

- The serial bits for a byte can precede a start bit and succeed a stop bit and receiver clock adjusts the interval T with the start bit-intervals
- T Interval = T, Serial Bits transmission rate = T<sup>1</sup> baud (baud per sec). Baud- A word for rain drops when drizzling

### UART Mode Advantages

- Characters can sent with varying intervals between them
- Intermediate intervals between two characters or sets of characters used for handshaking messages between transmitter and receiver and interpreting the data bits

#### **UART Mode Advantages**

• ISR executed on receiving the byte can be longer as the intermediate intervals between stop bit and next start bit can be prolonged between two sets of characters



#### SI UART mode Device Tx-data and Rx-Data register bits



buffered) when Tx is taking place for SBUF output, input at RxD for SBUF input also occurs

#### **SI UART mode Device Baud control**

- SI UART mode Tx device does not simultaneously transmit serial clock pulses. Baud is however defined same at Tx SI UART mode and Rx SI UART mode.
- A timer may be baud rate generator.

# **SI-10T mode without TB8 or**



Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

# UART SI output 8 bits (01000100) in10T format



# Outline

- Serial Communication
- SI Synchronous
- SI- UART mode
- SI- 10T mode without TB8 or RB8
- <u>SI-11T mode with TB8 or RB8</u>
- Receiver wake up feature in multiprocessor serial communications

# UART SI output 8 bits (01000100) in11T format Start bit



Stop bit = 1

#### **TB8 = 0 or 1 as per 8th bit to be sent by transmitter**

# Advantages of sending TB8 and receiving RB8

• TB8 can be used to send the parity ( a bit after counting the number of 1s in the character). RB8 received 8th bit after b0b7 bits for data will then let then receiver check for parity error.

# Advantages of sending TB8 and receiving RB8

• TB8 can be used to send through b0-b7 the address of the receiver when TB8 set to 1 and data bits through b0-b7 when reset to 0 so that only select addressed receiver among several ones identify the data bits

#### Advantages of sending TB8 and receiving RB8

 TB8 can be used to send the command through b0-b7 to the receiver when TB8 set to 1 and data bits through b0-b7 when reset to 0 so that receiver interprets the data as per the previous command.

# Receiver wake up feature in multiprocessor serial communications

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

# Eight Multiprocessor Systems connected to a Serial Transmitter



#### **Receiver 111**

Multi-processors communication in UART SI uses a wake up bit RWAK (SM2 in 8051) at Serial control register

• TB8 is used to send through b0-b7 the address of the receiver when TB8 set to 1 and data bits through b0-b7 when reset to 0 so that only select addressed receiver among several ones identify the data bits sent at the succeeding characters Serial Communication UART Control RWAK bit

• When RWAK= 1 then a receiver interrupt (RI) occurs when RB8 = 1 and RI does not activate when RB8 bit is received 0. Serial Communication UART Control RWAK (SM2) bit application 11T mode in multiprocessor communication

• First each receiver RWAK bit is set to 1. Each receiver activates receiver interrupt when RB8 = 1,therefore reads the 8-bits and check- <u>does it</u> <u>corresponds to its predefined address</u> (000 or 001 or ..?

Then each receiver RWAK bit is kept to 1 except the one, which successfully checked its address. That receiver **RWAK** bit is forced = 0, it therefore keeps on activating RI each time whether RB8 = 0 or 1, therefore it reads the 8-bits and receives the data. Whenever it finds RB8 = 1, it again checks its address, if not found same as before, it forces RWAK again = 1.

# Summary

Microcontrollers-... 2nd Ed. Raj Kamal Pearson Education

## We learnt Serial Transmission

- A stream of 1s and 0s is sent
- Interval = T, Serial Bits transmission rate = T<sup>-1</sup> bps (bit per sec).
- UART Interval of serial bits = T, Serial Bits transmission rate =  $T^{-1}$  baud (baud per sec)

## We learnt Serial Transmission

- Synchronous SI—Separate clock line
- SI UART mode— Two Modes not using and using TB8 (10T or 11T)
- Use of RWAK bit (SM2 bit) for multi processor UART mode communication