Chapter 2

Overview of Architecture and Microcontroller-Resources

Lesson 4

Timers, Real Time Clock Interrupts and Watchdog Timer

Microcontroller-resources

Port P1

Port P0

Port P2

Port P3

PWM

ADC

Synchronous SI

Timers

RTC

WDT

UART mode SI

Internal Program Memory

Internal Data Memory

Timer-Counter
Functions

Timer-Counter, overflow, interrupt and ISR

Timer-counter as counter

- A counter gets inputs from external events
- Inputs can be -ve edge transitions at a pin of an MCU
- Counts x increment on each count
- Reaches upper limit of all bits = 1s and then on next counts all bits = 0s. The counter is said to overflow

Timer-counter as Timer

- A timer is a counter getting constant interval periodic inputs from a clock source
- Counts x increment on each clock-input
- Timer timeouts (overflows) when on all bits becoming = 0s and x = 0.

n-bit timer-counter example

Counter inputs clock inputs

n-bit timercounter

Clock Inputs period = $1 \mu s$ for 12 MHz XTAL (8051)

External pin for events d Ed. Raj Kamal

Timer overflow interrupt if not masked, an <u>ISR</u> executes

Overflows after 2ⁿ clock inputs if initial count bits all 0s.

ISR (interrupt service routine)

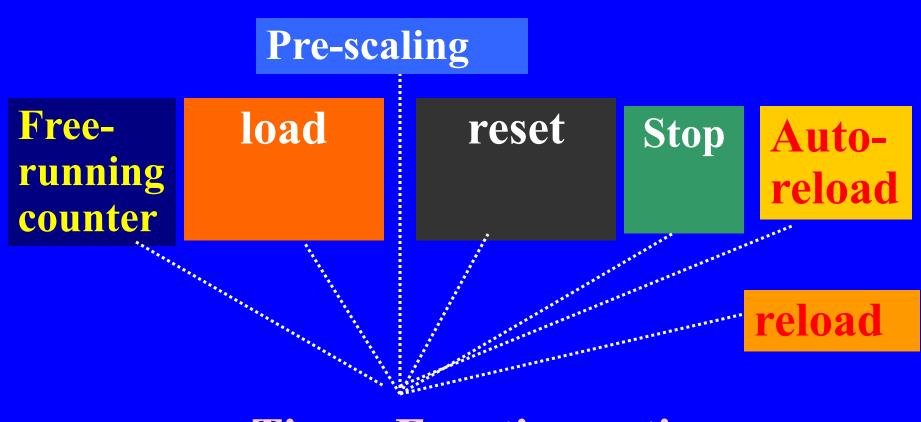
- ISR (interrupt service routine) is a program that runs on an interrupt, for example, on an timer-overflow interrupt
- Return to the interrupted program after finishing running of all the codes.

ISR on Timer overflow

- An interrupt can be masked(disabled) to unable the ISR from running.
 Usually by a bit in interrupt enable register control register or a control register.
- Timer-counter interrupt can also be masked. If not masked, a timer will overflow and interrupt after $(2^n x)$ clock-inputs.

8-bit Timer-counter

- Let initial value in an 8-bit counter = 0. The 8-bit counter overflows (interrupts) after 2^8 = 256 counts or 256 edge transitions.
- Let initial value loaded in an 8-bit timer = x_0 The 8-bit timer overflows after $(2^8 - x)$ clock input or (256 - x) edge transitions. If clock inputs are after every 1 μ s, then timeout (interrupt) period = $(256 - x_0) \mu$ s

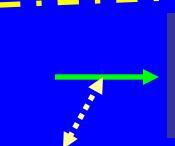

Timer-Counter Registers

Timer 16-bit Timer Timer control/ Mode register status Register Register Byte Byte Write/ Write/Read Write/Read Read upper bits lower bits bits

Microcontrollers-... 2nd Ed. Raj Kamal
Pearson Education

8051/8052 Timing/Counting Devices -

T1 and T0 and T2


Timer-Function options

A Reload of Counter on an input

Count Inputs

16-bit counter

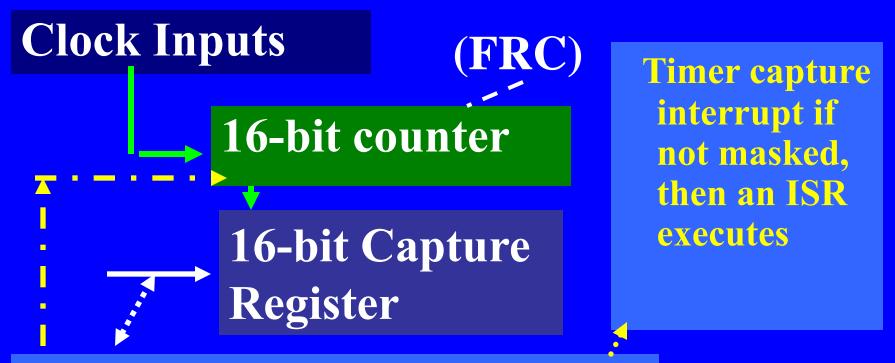
Timer overflow interrupt if not masked, then an ISR executes

16-bit Load Register

An edge forcing coping of the into counter starting value from Load Register if capture enabled

Timer reload interrupt if not masked, then an ISR executes

Free Running Counter (FRC)


- No reset feasible, No stop feasible
- No initial value load feasible and thus no write to timer-counter register of FRC
- Auto reloads 0s on each successive overflows
- Used for real time control, as its reference is real, unchanged

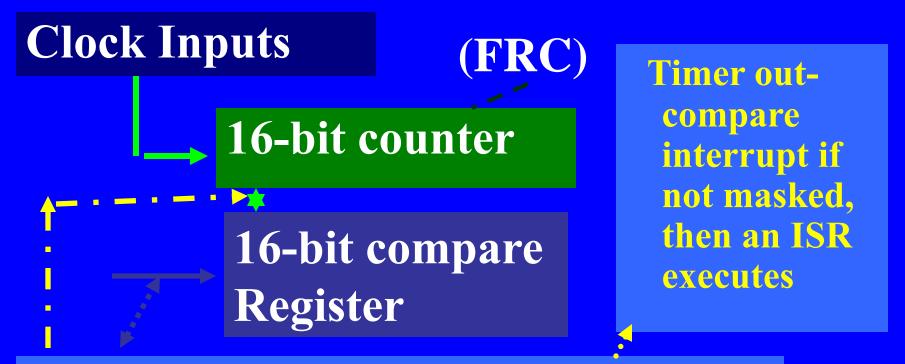
Pre-scaling

• The clock inputs can be divided by certain factor so that the timer timeouts periods are slowed by that factor. The action is pre-scaling of the counts and factor is called pre-scaling factor.

Timer Input Capture feature

An Input Capture of Timer or FRC

An edge forcing copying of the counter reading x into Capture Register if capture enabled


Advantage

Lets an event-time be captured in a register. Enables finding

- pulse width
- pulse (event) frequency
- event-interval between the events

Timer out-compare feature

An Out-Compare in a Timer or FRC

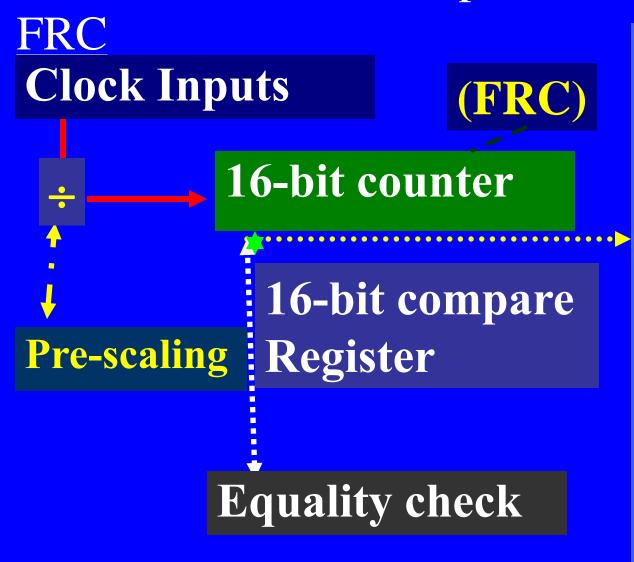
Compare both registers, on equality force an output level 0 or 1 or toggle output if comparison enabled

Advantage

- Lets an output or sequences of outputs fire at a preset time (s)
- Lets at a preset time (s), an interrupt(s) occur to initiate an action(s) or initiate sequences of actions, using the ISR.

Real time clock interrupts and software timer interrupts

Real time clock interrupts using a Timer or


FRC Clock Inputs (FRC) 16-bit counter **Pre-scaling to** control real time clock time tick interval 4 ms or 8 ms

Real time clock interrupts if not masked at the beginning, the ISRs execute at periodic intervals

Advantage

- Lets the system periodically supervise and schedule the different processes
- Used for repeated calls to a task or program or calls to sequences of tasks or programs

Software Timer interrupts in a Timer or

out-compare interrupts if not masked at the beginning, the ISRs execute a software at periodic intervals

Advantage

- Lets the system periodically supervise and schedule the different processes at pre-select times
- Used for repeated calls to a task or program or calls to sequences of tasks or programs at pre-select times

Watchdog timer

Watchdog

- Watchdog timer forces system reset to save from system stuck up state (hanging state) during running
- Timeout period can be set at the beginning

• Rewriting can be done to initiate next WDT cycle before a timeout to enable extension of the period by another cycle

Advantage

- Lets the system come out of hang or stuck up situation
- Lets the system recover to initial state after a watched period

Summary

We learnt

Timing Devices

- Timer-counter, overflow and interrupt ISR
- Timer function as counter
- Timer, reset, load, reload, autoreload, stop and start

We learnt

Timing Devices

- Free running counter overflow and on interrupt an ISR run
- Input capture function
- Out compare function
- Real time clock interrupts and software timer interrupts

We learnt

Timing devices

 System reset after a watched period using a watchdog timer