Chapter 06: Instruction Pipelining and Parallel Processing

Example of the Pipelined CISC and RISC Processors

Objective

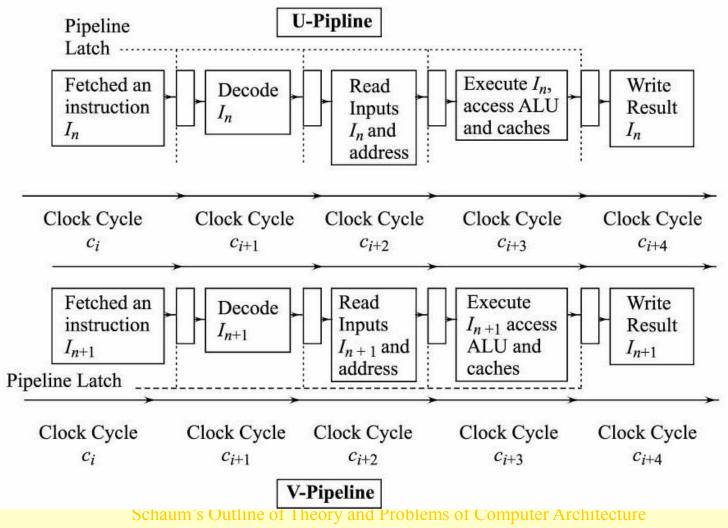
• To understand pipelines and parallel pipelines in CISC and RISC Processors by Examples

Most modern processors

 Improve performance —SunSparc, Pentiums, PowerPCs are the superscalars and examples of pipelining and parallel processing of instructions

Pentium and PowerPC pipelines in parallel

 Performance improves in processors by allowing independent instructions to execute simultaneously (instruction-level parallelism)


Pentiums

Pentiums

- The superscalar processors
- Have simple I-bit-technique— based dynamic branch prediction

Pentiums Two pipelines

- Named as U and V
- V pipeline— for simple instructions and
- U— for any instruction
- 64-bit wide external data bus
- The conditional jump was made a second instruction among the two running in parallel

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009

Two instructions proceed through the parallel pipelines

- Two instructions proceed through the parallel pipelines at one stage per cycle, until they reach the register (result) write-back (WB) stage
- At WB the execution of instruction I_n is complete in pipeline 1 and I_{n+1} in 2

• In earlier versions, Pentium processors executed two integer instructions or two floating-point instructions in parallel

- Pentium's later versions had three independent units, two for integer operations and one for floating-point operations
- Pentium Pro version had an additional pipeline and supported two integer operations and two floating-point operations in four pipelines

• **Pentium II** versions had additional MMX instructions

Pentium MMX

(a) 128-bit MMX registers, each for two packed64-bit floating-point operations and pipelineshas 20-stages

(b) 128-bit MMX registers, each for two packed64-bit floating-point operations and pipelineshas 10-stages

Pentium MMX

(*c*) Two number 64-bit MMX registers, each for one packed 64-bit floating-point operations and pipelines has 5 stages

(*d*) Four number 32-bit MMX registers, each for two packed 64-bit floating-point operations and pipelines has four sets of 5-stage pipelines.

Pentium III versions

- Introduced single instruction multiple data SIMD instructions with extension for execution of streaming floating point operations in pipelines
- Pipelines had 10 stages

Pentium IV versions

- Introduced in the twenty-first century with 1GHz plus clock cycles
- 128-bit XMM (extended multi media) registers, each for two packed 64-bit floatingpoint operations
- The 128-bit registers handle long integers also
- Pipelines have 20 stages

PowerPC Processor

PowerPC

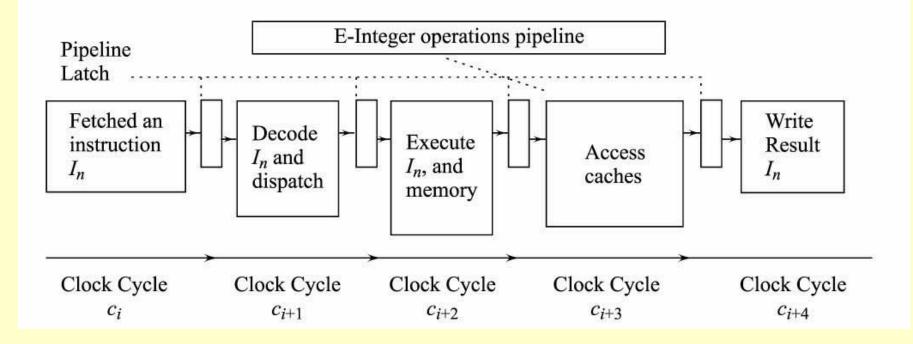
- IBM, Motorola, and Apple developed the PowerPC superscalars
- An RISC design but provides for more than 200 instructions at the instruction set

PowerPC

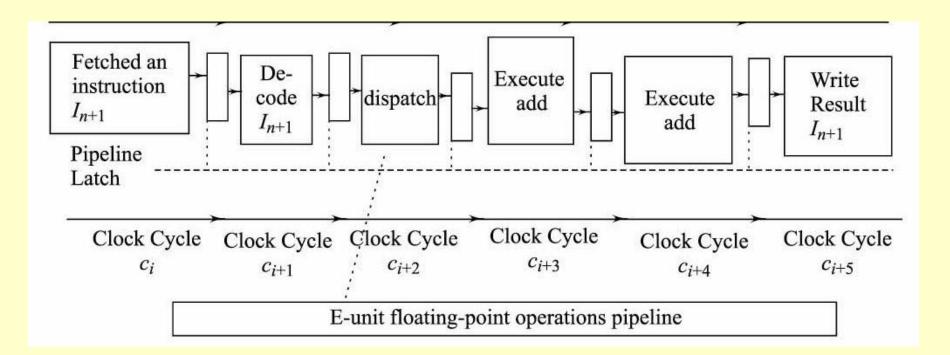
- Load and store architecture (only the LD and ST access the memory and not the arithmetic and logic instructions)
- Separate GPRs and floating-point registers

PowerPC

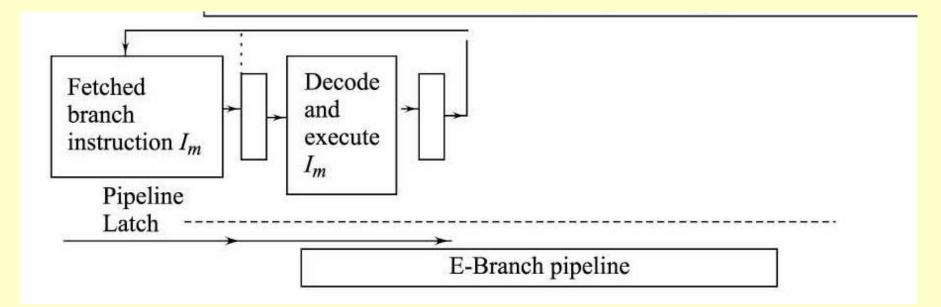
 PowerPC 601 and 603 have three pipelines each— one for branch processing, one for integers (E-integer Pipeline), and one for floating-point (E-floating point Pipeline) operations


Uneven number of Stages in Pipelines

• There are five stages in the integerprocessing pipeline, six in the floating-point pipeline, and two in the branch-processing pipeline stages


Stages in Pipelines

- The second stage in E-integer line decodes, reads, and dispatches operands
- The third stage in E-integer line executes and computes memory addresses
- The fourth stage is cache access


E-unit Integer Operations Pipeline

E-unit Floating point operations pipeline

E-branch pipeline

PowerPC version 604

- Six pipelines
- Three integer and one floating-point instruction in parallel per clock cycle.
- There were six independent units, two for integer operations, two for floating-point operations, and two for branch processing

PowerPC version 620

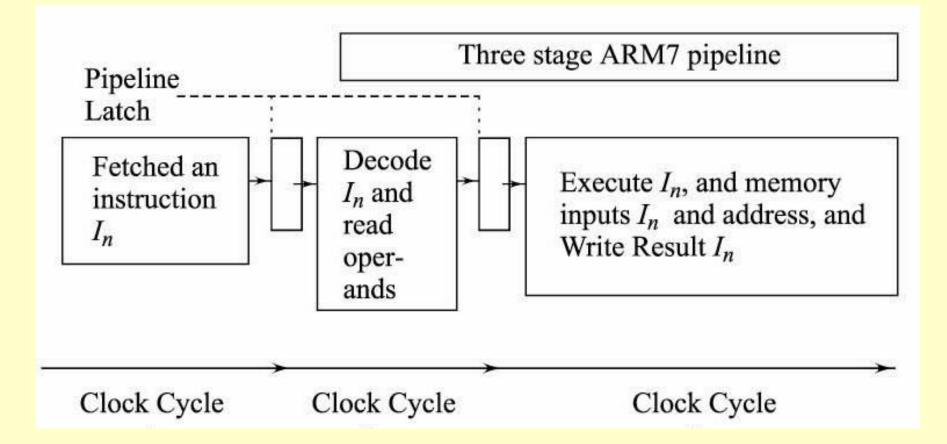
 PowerPC 620 had 64-bit operations. It also had six pipelines and three integers and one floatingpoint instruction in parallel per clock cycle

PowerPC 750 series

- Introduced in twenty-first century and has many features.
- MPC7XXX has eleven independent pipeline units— load and store processing unit, branch-processing unit, floating-point unit, four integer operations, and two for floating-point operations and packed data operations.

ARM (Advance RISC Machines)

• ARM (Advance RISC Machines) developed the large variations in superscalars as per application-specific needs


ARM (Advance RISC Machines)

 It has separate 16 GPRs, CPSR, and SPSR (Current Process Saved Status Register and Saved Process Status Register)

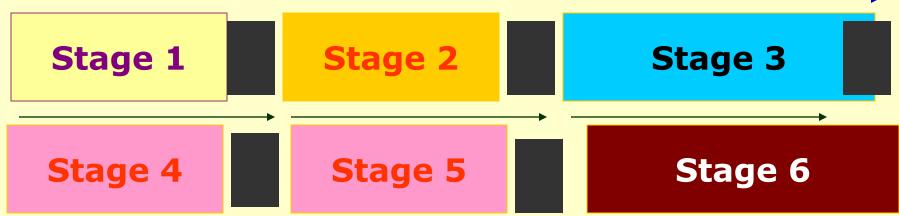
ARM RISC design

• ARM7TDMI had three stages pipeline

ARM7 three stage pipeline

Pipelines in StrongARM and ARM 9

Five Clock Cycle Stages Pipeline



• StrongARM has 5-stage pipeline and a high-speed multiplier circuitry

• ARM9 has 5-stage pipeline

Pipelines in ARM 10

Five Stages Clock Cycle Pipeline

ARM10 has 6-stage pipelines

Summary

We learnt

- Superscalar Processors Pentium, PowerPC
- ARM pipelines

End of Lesson 14 on Example of the Pipelined CISC and RISC Processors