Chapter 05: Basic Processing Units ... Control Unit Design Organization

Lesson 14: Microprogrammed Control

Objective

 Understand the design of microprogrammed control unit to generate all sequences of the control signals using a control memory • Learn how the control memory stores at successive addresses the data for generating the control signal values 0 or 1 stored at each address and generates the sequences by address changes from the start address to end address • Learn how the start address for generating the

control signals depend on the instruction at ID

Microprogram concept

Microprogram concept

- Hardware, with a large number of logic gates, does not directly execute an instruction
- Instead, the hardware executes very simple set of micro-operations called microinstructions
- Each instruction specifies a sequence of microoperations that are used to implement the instruction

Microprogram concept

• Each instruction translated into a short program of microinstructions by the hardware; similar to the way a compiler translates each instruction in a high-level language program into a sequence of assembly-language instructions

Microprogrammed control execution

 Microprogrammed control memory generates a set of outputs for a given set of microinstructions (set of control-Signal sequences) stored in that

Microprogrammed control execution

- Using microprogramming, architects could build simple hardware and then microprogram that hardware to execute complex instructions
- Requirement of limited the amount of hardware that could be built into the processor
- Enables design of instruction sets with complex instructions at the reduced total number of microinstructions required to implement a program

Microprogrammed Control Unit organization

Organization of control store memory

- *m*-distinct instructions from I_0 to I_{m-1} , there are *m*-distinct microprograms stored in memory mp_0 to mp_{m-1} , each having a distinct start address
- To execute an instruction, a microprogrammed processor accesses this memory to locate the set of microinstructions required to implement the instruction, I_i at the ID and then execute the microinstructions mp_i for I_i in a sequence of addresses from the start address

m-instruction processor having *m*-sets of inputs and *m*microprograms stored at control ROM distinct start addresses

Use of Control memory in place of hardwired control

- Hardware, with a large number of logic gates, does not directly execute an instruction
- Instead, the hardware executes very simple microoperations
- Each instruction specifies a sequence of microoperations that are used to implement the instruction
- Each instruction translated into a short program of microinstructions by the hardware; similar to the way a compiler translates each instruction in a high-level language program into a sequence of assembly-language instructions

Use of Control memory in place of hardwired control

- Hardware, with a large number of logic gates, does not directly execute an instruction
- Instead, the hardware executes very simple microoperations
- Each instruction specifies a sequence of microoperations that are used to implement the instruction
- Each instruction translated into a short program of microinstructions by the hardware; similar to the way a compiler translates each instruction in a high-level language program into a sequence of assembly-language instructions

Summary

We Learnt

- Micro-programmed control using control memory
- Starting address of a microprogram as per ID output
- m-distinct instructions from I_0 to I_{m-1} , there are m-distinct microprograms stored in memory mp_0 to mp_{m-1} , each having a distinct start address

We Learnt

- Steps implement by outputs of control ROM from a microprogram start address to end address
- Requires simpler hardware to implement a complex instruction set

End of Lesson 14 on Microprogrammed Control