Chapter 05: Basic Processing Units ... Control Unit Design Organization

Lesson 10: Execution of a branch instruction

Objective

• Learn microoperations for a branch instruction

Steps for branch instruction operations

Instruction Fetch

Step 1) Processor requests instruction from memory using address in Program Counter PC register

Step 2) Memory using data bus returns the instruction to instruction register IR register

Instruction decoding and execution

Step 3) Processor decodes instruction and places at instruction decoder ID register

Step 4) Processor executes instruction at execution unit by finding the branch address value by operands

Result Write back and PC update for the next

Step 5) Result of instruction written back for PC

Step 6) PC transfers to MAR for next instruction

Execution of a Complete Instruction by Data Path Implementation

- Execution of a branch instruction can be considered as the implementation of a specific data path flow, as per the specific instruction
- The processing unit composition is as controlled data-path unit and control unit (controlling and sequencing unit)
- Control unit generates control signals to implement each step using signals φs to enable new branch address into PC and then in MAR

Processing subunits during branch instruction

Microoperations during branch instruction fetch

- 1. *Step j*: PC transfers MAR through internal bus $PC \rightarrow MAR$
- 2. Step j + 1: For instruction last byte fetch case, PC \rightarrow PC + 4 for 32-bits memory word alignment

Microoperations during branch instruction fetch

0

٠

٠

- 7. Step j + 6: MDR transfers through internal bus MDR \rightarrow IR, GPR, or another word-storing unit through bus or a MUX.
- 8. Repeat steps j + 2 to j + 6 if instruction opcode and operands fetch is not complete

Microoperations during branch instruction after fetch of opcode and operands

- Assume that IR gets a BR *absolute address* instruction
- Then, then step *l* following steps will be implemented, after Step *j* to *j* +6, to fetch the instruction opcode and operands else step *m*
- Step *l*: Operand address with the instruction absolute address \rightarrow PC

Microoperations during conditional branching with an operand as offset

- 1. Step m: Test comparison condition
- 2. Step m + 1: If comparison condition found the offset then it adds into PC
- The operation $PC + offset \rightarrow Temp$
 - 3. *Step* m + 2: Temp \rightarrow PC
 - 4. *Step* m + 3: PC \rightarrow MAR

Summary

We Learnt

- Instruction steps in completing all microoperations during branch
- Fetch instruction
- Read operands
- Execute instruction operand transfer to PC in case of branch absolute
- Execute instruction operand transfer to PC in case of branch condition satisfied

End of Lesson 10 on **Execution of a branch instruction**