Chapter 05: Basic Processing Units ... Control Unit Design Organization

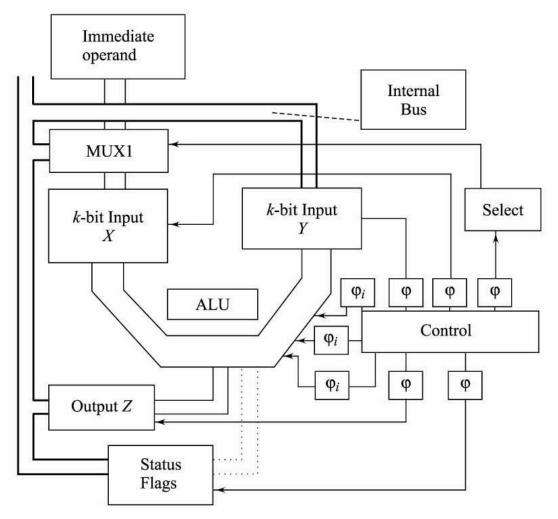
Lesson 07: **Microoperations for Shifts or rotate**

Objective

• Learn how an arithmetic shift right or logicshift right or left logic operation performed by the sequences of microoperations

• Learn how an rotate right or left bit operation performed by the sequences of microoperations

An Arithmetic or logic shift or a rotate operation


Execution of a shift or rotate Instruction by Data Path Implementation

- Execution of an ALU instruction can be considered as the implementation of a specific data path flow, as per the specific instruction for shift or rotate and left or right operations on the bits
- Control of the data-path unit and control unit (controlling and sequencing unit)
- Control unit generates control signals to implement each step using signals φs

Sequence of actions to define the controlled transfers of data between processing subunits

- Processing subunits— registers, *X*, ALU circuits, *Z*, and status register along a required data path
- MUX unit to select one data path among several

ALU design as data path with a control unit for arithmetic or logic operation

Microoperations after receiving the instruction at IR

- Decoded by decoding logic
- Then the logic results at register instruction decoder (ID) initiate control actions
- Each control signal selects an action through a gate input φ at each step

Operations by ALU

- Arithmetic shift left ASL− ri ← ASL ri
- logical shift left LSL— ri \leftarrow LSL ri
- Arithmetic shift Right−ASR ri ← ASR ri
- logical shift Right LSR— $ri \leftarrow LSR$
- Rotate Left (circular shift left)— RL ri ← RL ri
- Rotate Right (circular shift right)— RR ri ← RL ri

 Step i: Transfers a k-bit input source operand through the bus fro ri to X
 ri→ (Bus), → (Bus) → MUX
 MUX— a multiplexer to select one among several channels at inputs as per the select subunit signal

2. Step i + 1: Transfers a k-bit input source operand through the bus using MUX to X Input operand through a MUX \rightarrow X

3. *Step i* + 2: Transfer *X* to $ALU \rightarrow ALU$

4. *Step i* + 3: ALU processing unit select through one of the gates ϕ_i an operation as per the shift or rotate instruction, which was received at the IR

5. Step i + 4: Transfers a k-bit output Z from ALU— $Z \leftarrow ALU$

6. Step i + 5: Transfers status flags generated, for example, carry or overflow to status register — Status Register ← ALU

7. Step i + 6: Transfers from Z the result to destination operand through bus—
(Bus) ← Z

8. Step i + 6: Transfers from *bus* the result to destination operand through bus—

 $ri \leftarrow (Bus)$

ALU instruction for shift or rotate

Eight steps in ri ← shift or rotate (X operand),
 Flags ← status of operation and Bus → ri

Control Signal for selecting an ALU shift or rotate operation

ALU control input during an interval T step 3 for a bit Operation for shift or rotate

- One active C_{alu} among six \$\overline\$s for six bit operations
- ϕ_{ASL} : ALU \leftarrow ASL (X)
- ϕ_{LSL} : ALU \leftarrow LSL (X)
- 1. ϕ_{ASR} : ALU \leftarrow ASR (X)
- 2. ϕ_{LSR} : ALU \leftarrow LSR (X)

ALU control input during an interval T step 5 for a Logic Operation

- 5. ϕ_{RL} : ALU \leftarrow LSR (X)
- 6. ϕ_{RL} : ALU \leftarrow LSR (X)

Summary

We learnt

- An arithmetic shift right or logic-shift right or left logic operation performed by the sequences of microoperations
- Operation as per control signal activated in step 3 among 8 steps
- A rotate right or left logic operation performed by the sequences of microoperations
- Eight steps for an ALU operation among 4 shift and 2 rotate operations

End of Lesson 07 on Microoperations for Shifts