
Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
1

Lesson 14

Use of the Stack Frames

Chapter 04: Instruction Sets and the

Processor organizations

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
2

Objective

• To understand call and return, nested calls and

use of stack frames

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
3

Calling a subroutine

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
4

Calls to the subroutines

• Allow commonly used functions to be written
once and used whenever they are needed, and
provide abstraction, making it easier for multiple
programmers to collaborate on a program

• Important part of virtually all computer
languages

• Function calls in a C language program

• Also included additional functions from library
by including the header files

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
5

Difficulties when Calling a subroutine

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
6

Difficulties involved in implementing

subroutine calls

1. Programs need a way to pass inputs to

subroutines that they call and to receive

outputs back from them

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
7

Difficulties involved in implementing

subroutine calls

2. Subroutines need to be able to allocate space in

memory for local variables without overwriting

any data used by the subroutine-calling

program

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
8

Difficulties involved in implementing

subroutine calls

3. Since subroutines may be called from many

different locations within a program and are

often compiled separately from the program

that calls them, it is generally impossible to

determine which registers may be safely used

by a subroutine and which contain data that

will be needed after subroutine completes

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
9

Difficulties involved in implementing

subroutine calls

4. Subroutines need a way to figure out where

they were called from so execution can return

to the calling program when the subroutine

completes

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
10

A subroutine’s stack frame

 1. Space for the contents of the calling

program’s register file

 2. A pointer to the location that the subroutine

should branch to when it completes (calling

program return address)

 3. The input arguments to the subroutine, and

 4. The subroutine’s local variables

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
11

Stack frame for a called subroutine

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
12

Stack frame

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
13

Use of the stack frames

• When a subroutine is called, the contents of the

calling program’s register file are copied into the

stack frame, along with its return location and

the inputs to subroutine

• The subroutine then uses the rest of the stack

frame to hold its local variables

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
14

Different subroutines’ stack frames of

different sizes

• The number of input arguments and local

variables varies from subroutine to subroutine

• The arrangement of data within the stack frame

also varies from programming system to

programming system

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
15

Use of stack frame on Return

• When a subroutine finishes, it jumps (returns to

the return-address at the stack frame

• Execution of the calling program resumes

• The calling program then reads its saved register

file contents out of the stack frame and handles

the subroutine's result, which can be passed

either in a register or on the stack

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
16

Use of stack frame on Return

• Finally, the top-of-stack pointer restored to its

position before the subroutine was called,

popping the stack frame off of the stack

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
17

Nesting of calls using Stack frames

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
18

Nesting

• A return from called program is always to its

calling program

• The stack structure best suited as a stack

functions as LIFO (last in last out) structure

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
19

Examples of nesting

• Nesting in main program of f () and g ()

• Note that when g () call f (), f () first returns to g

() and when the main program calls f () then f ()

returns to the main

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
20

Program making nested subroutine calls

(subroutines that call other subroutines)

• Each nested subroutine allocates its stack frame

on top of those already on the stack

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
21

The contents of the stack during the

execution of subroutine h ()

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
22

The contents of the stack during the

execution of subroutine h ()

• Rhe execution of subroutine h () called from
within subroutine g ()

• Subroutine g () was called from within f (),
which was called by the main program

• As long as the stack does not overflow,
subroutine calls can be nested as deeply as
necessary and each stack frame will be popped
off of the stack when execution returns to its
calling program

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
23

Stack overflows

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
24

Stack overflow

• The top of stack entering into instruction’s

locations of the programs in memory and has

become so deep from S0 (empty stack top) that

no space is available for further stacking

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
25

Calling convention in a programming

system

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
26

Calling convention

• Defines the requirements that a programming

system places on how a subroutine is called and

how data is passed between a calling-program

and its subroutines

• Used their calling convention to reduce the

amount of data that needs to be copied to and

from the stack during a subroutine call

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
27

Example of a calling convention

• Might specify a set of registers that are used to

pass inputs and outputs between the calling

program and subroutine

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
28

Calling convention

• Different programming systems may arrange the

data in a subroutine's stack frames differently

• May require that the steps involved in calling a

subroutine be performed in different orders

Summary

• Stack frame enables many parameters to be

made available to the called routines

• Stack frame of different subroutines can be

stacked at the stack

• When a subroutine finishes, it jumps (returns to

the return-address at the stack frame and

Execution of the calling program resumes

We learnt

Schaum’s Outline of Theory and Problems of Computer Architecture

Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009
31

• The calling program then reads its saved

register file contents out of the stack frame and

handles the subroutine's result, which can be

passed either in a register or on the stack

• A calling convention used to define the

requirements that a programming system places

on how a subroutine is called and how data is

passed between a calling-program and its

subroutines

We learnt

End of Lesson 14 on

Use of the Stack Frames

