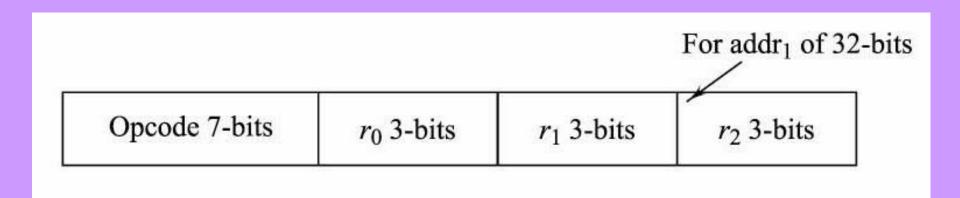
# Chapter 04: Instruction Sets and the Processor organizations

Lesson 05: **Basic Addressing Modes for operands** 

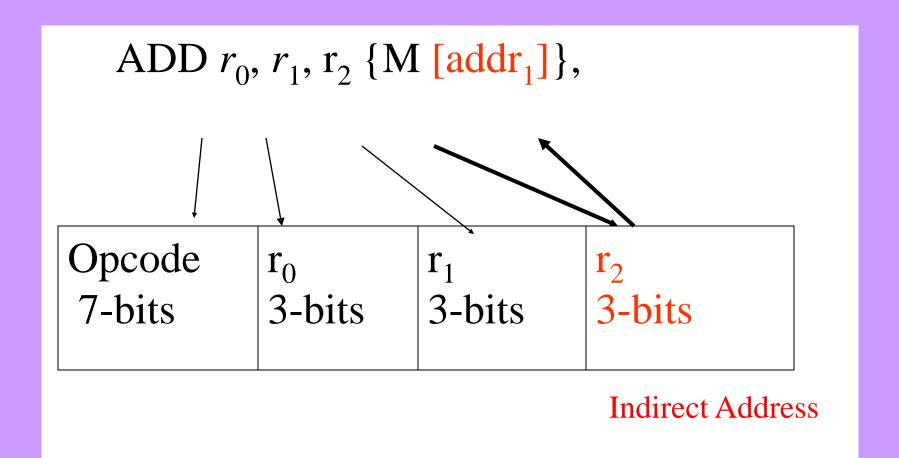
## **Objective**

Basic Addressing Modes

## Addressing Modes


#### Addressing mode

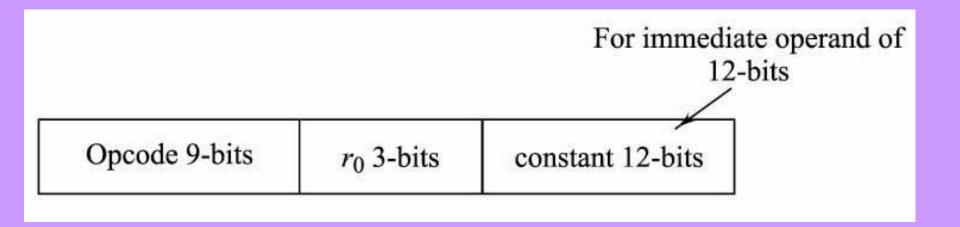
• Defined by an instruction opcode of an instruction lets the processor compute the address of the operands


#### **Common Ways**

- 4-ways— the instructions of an instruction set compute the address of the operands
- 1. At a register
- 2. At a memory address specified in instruction
- 3. At a memory address pointed by a register
- 4. The immediate operand (part of instruction after the opcode bits)

## **Indirect Addressing Mode**




## Indirect Memory to Register Operation Format



## 4) Immediate operand

- Operand is at a part of the instruction immediate operand after the opcode of the instruction — ADD r1, #07, second source operand is immediate and is 07
- First source operand and destination is same and is a register operand in r1

## Immediate operand



## Constant (Immediate Operand) to Register Operation Format

• If register  $r_0$  is specified by 3-bits and a constant is of 12 bits then instruction MOV rO, #b11-b0 can be three-bytes (m=3) long when the opcode field can have 24-3-12=9 bits. b11-b0 are 12 bits for a constant value to be moved in the register  $r_0$ .  $rO \leftarrow \#b11-bO$ 

Immediate Address

#### MOV r0, #constant

Opcode r0 3- constant 9-bits bits 12-bits

**Immediate Address** 

#### Memory address as operand

## Register to memory or Memory to Register Operation Formats

- $I = \text{operation } (M_0, ..., M_i, r_0, ..., r_j) \text{ or } I = \text{operation } (r_0, ..., r_j, M_0, ..., M_i,)$
- i = 0, 1 or 2 and j = 0, 1 or 2
- M— means a memory address and r means a register
- M<sub>i</sub> means memory content at address i, ADDR<sub>i</sub>

1) Memory address short or at a page or segment of memory – A memory address represented by few bits than *n* 

## $MUL r_0$ , $M [addr_1]$ .

• Direct memory by short address — If register  $r_2$  is specified by 4-bits and memory addresses by 20 bits (a short address for 32-bits), then MUL  $r_2$ , M [addr<sub>1</sub>] can be fourbytes (m = 4) long when the opcode field can have 32 - 4 - 20 = 8 bits. [ $r_3$  is implicit.] (r2-r3) pair  $\leftarrow$  r2 × M [addr<sub>1</sub>].

2) Memory address long - A memory address represented by all address bits represented by *n* bits

## $MUL r_2, r_3, M [addr_1]$

• Absolute long memory address— If register pair  $r_2$ - $r_3$  is specified by 4-bits each and memory addresses by 32 bits, then MUL  $r_2$ ,  $r_3$ , M [addr<sub>1</sub>] can be six-bytes (m = 6) long when the opcode field can have 48 - 8 - 32 = 8 bits. r2- $r3 \leftarrow r2 \times M$  [addr<sub>1</sub>]

3) Relative address— A memory address represented by relative displacement (plus or minus) from the next instruction address

4) Offset address—A memory address represented by an offset with respect to a base address, the offset plus base address bits displacement (plus or minus) from next instruction address

5) Base plus relative or offset, Index plus relative or offset, Base plus index plus relative or offset

## Summary

#### We Learnt

- Addressing of operands from memory
- Register addressing
- Memory direct addressing
- Memory indirect addressing
- Absolute long address
- Relative address
- Offset (Displacement)
- Immediate addressing

## End of Lesson 05 on **Basic Addressing Modes for operands**