Chapter 04: Instruction Sets and the Processor organizations

Lesson 04: **Type of Operands in the instructions**

Objective

• To understand type of the operands in instructions

Type of operands

Common Ways

- 4-ways— the instructions of an instruction set compute the address of the operands
- 1. At a register
- 2. At a memory address specified in instruction
- 3. At a memory address pointed by a register
- 4. The immediate operand (part of instruction after the opcode bits)

1) Register operand

 Operand is at a register—
MOV r0, r1; source and destination for register bits transfer both register operands

2) Memory address operand

• Operand is at a memory address—

LD r0, M (X); source operand is memory address X and destination operand is register operand

3) Indirect Memory reference address operand

- Operand is at a memory address pointed by a register—
- ST {r1 [M (X)]}, r2; source operand is register r2 and destination operand is a memory address X pointed by the register r1

Memory address as operand

Register to memory or Memory to Register Operation Formats

- $I = \text{operation} (M_0, ..., M_i, r_0, ..., r_j) \text{ or } I = operation (r_0, ..., r_j, M_0, ..., M_i,)$
- i = 0, 1 or 2 and j = 0, 1 or 2
- M— means a memory address and r means a register
- M_i means memory content at address i, ADDR_i

 Memory address short or at a page or segment of memory – A memory address represented by few bits than n

$\mathbf{MUL} r_0, \mathbf{M} \ [\mathbf{addr}_1].$

Direct memory by short address — If register r₂ is specified by 4-bits and memory addresses by 20 bits (a short address for 32-bits), then MUL r₂, M [addr₁] can be fourbytes (m = 4) long when the opcode field can have 32 - 4 - 20 = 8 bits. [r₃ is implicit.] (r2-r3) pair ← r2 × M [addr₁].

2) Memory address long - A memory addressrepresented by all address bits represented by *n* bits

MUL r_2, r_3, M [addr₁]

Absolute long memory address— If register pair r₂-r₃ is specified by 4-bits each and memory addresses by 32 bits, then MUL r₂, r₃, M [addr₁] can be six-bytes (m = 6) long when the opcode field can have 48 – 8 – 32 = 8 bits. r2-r3 ← r2 × M [addr₁]

 Relative address— A memory address represented by relative displacement (plus or minus) from the next instruction address

4) Offset address— A memory address represented by an offset with respect to a base address, the offset plus base address bits displacement (plus or minus) from next instruction address

5) Base plus relative or offset, Index plus relative or offset, Base plus index plus relative or offset

Memory Locations and Addresses and Fetch operation

2ⁿ Locations Each having one byte

- Let n = 20, then memory addresses are between 0 and $2^{20} - 1 (=2^{10} \times 2^{10} - 1 = 1024 \times 1024 - 1 = 1048575)$
- Memory = 1 MB as 1 MB = 1K × 1K B = 2¹⁰ × 2¹⁰) as per convention for expressing the total memory locations

$\begin{array}{l} \mbox{Memory location identified by an address} \\ \mbox{between } 2^n - 1 \end{array}$

Summary

We Learnt

• Type of operands

End of Lesson 04 on **Type of Operands in the instructions**