Chapter 03: Computer Arithmetic

Lesson 07:
Integer Division

Objective

- Understand process of integer division
- Restoring Algorithm
- Non-restoring Algorithm

Division using successive subtraction

Division using successive subtraction

- Implemented on computer systems by repeatedly subtracting the divisor from the dividend
- Counting the number of times that the divisor can be subtracted from the dividend before the dividend becomes smaller than the divisor

Division 15 with 5

- Subtract repeatedly from 15 , getting 10,5 , and 0 as intermediate results
\cdot The quotient, 3 , is the number of subtractions that had to be performed before the intermediate result became less than the dividend

$15 \div 5$

0b0101
 Ob $1 1 \longdiv { 0 0 } 0$
 1111
 11
 0011
 00

 0b00

Schaum's Outline of Theory and Problems of Computer Architecture

Too long Time

- For example, 2^{31} (one of the larger numbers representable in 32-bit unsigned integers) divided by 2 is 2^{30}, meaning that 2^{30} subtractions would have to be done to perform this division by repeated subtraction
- On a system operating at 1 GHz , this would take approximately 1 s , far longer than any other arithmetic operation

Division using look-up table

Lookup Table Method

- Using pre-generated tables, these techniques generate 2 to 4 bits of the quotient in each cycle
- This allows 32-bit or 64-bit integer divisions to be done in a reasonable number of cycles

Division using Restoring Algorithm

Restoring Algorithm

-Assume-X register k-bit dividend

- Assume- Y the k-bit divisor
- Assume - S a sign-bit

Restoring Algorithm

1. Start: Load 0 into accumulator k-bit A and dividend X is loaded into the k-bit quotient register $M Q$.
2. Step A: Shift $2 k$-bit register pair $A-M Q$ left
3. Step B: Subtract the divisor Y from A.

Restoring Algorithm

4. Step C: If sign of $\mathrm{A}(\mathrm{msb})=1$, then reset $M Q_{0}$ $(\mathrm{lsb})=0$ else set $=1$.
5. Steps D: If $M Q_{0}=0$ add Y (restore the effect of earlier subtraction).
6. Steps A to D repeat again till the total number of cyclic operations $=k$.
At the end, A has the remainder and $M Q$ has the quotient

Division of 4-bit number by 7-bit dividend

Step	S-flag	First Register for A	Second Register for MQ	Action Taken	Number of operations (instructions)
Start	0	0 b 0000	0 b 0000	Clear S, A, MQ	3 for clearing C, A and M
	0	0 b 0001	0 b 1110	Load dividend X (lower k bits) between $M Q_{k-1}$ and $M Q_{0}$ and dividend higher bits in A	2 for loading A and MQ
Step 0A	0	0011	1100	Shift left S-A-M	
Step 0B	0	0000	1100	Subtract Y from S- A, result in S- A	2
Step 0C	0	0000	1101	MQ $=1$ as S $=0$	1
Step 0D	0	0000	1101	Skip restore by adding as S $=0$	1
Step 1A	0	0001	1010	Shift left S-A-M	1 (test S)
Step 1B	1	1110	1010	Subtract Y from S-A, result in S-A	2
Step 1C	1	1110	1010	MQ $=0$ as S $=1$	1
Step 1D	0	0001	1010	Add Y into S-A to restore as S $=1$	1

Schaum's Outline of Theory and Problems of Computer Architecture

Division of 4-bit number by 7-bit dividend

Step 2A	0	0011	0100	Shift left S-A-M	2
Step 2B	0	0000	0100	Subtract Y from S- A, result in S- A	1
Step 2C	0	0000	0101	$\mathrm{MQ}_{0}=1$ as S $=0$	1
Step 2D	0	0000	0101	Skip restore as S $=0$	$1($ test S)
Step 3A	0	0000	1010	Shift left S-A-M	2
Step 3B	1	1101	1010	Subtract Y from S- A, result in S- A	1
Step 3C	1	1101	1010	$\mathrm{MQ}_{0}=0$ as S $=1$	1
Step 3D	0	0000	1010	Add Y into S-A to restore as S =1	1
Answer	0	Remainder $=0$			

* after the left shift from $m s b$ of A.

Division using Non-restoring Algorithm

Non-Restoring Algorithm

- Assume- that there is an accumulator and MQ register, each of k-bits
- MQ_{0}, (lsb of MQ) bit gives the quotient, which is saved after a subtraction or addition

Non-Restoring Algorithm

- Total number of additions or subtractions are k-only and total number of shifts $=k$ plus one addition for restoring remainder if needed

Non-Restoring Algorithm

- Assume— that X register has ($2 k-1$) bit for dividend and Y has the k-bit divisor
- Assume-a sign-bit S shows the sign

Non- Restoring Algorithm

1. Load (upper half $k-l$ bits of the dividend X) into accumulator k-bit A and load dividend X (lower half bits into the lower k bits at quotient register MQ

- Reset sign $S=0$
- Subtract the k bits divisor Y from S-A (1 plus k bits) and assign MQ_{0} as per S

Non- Restoring Algorithm

2. If sign of A, $S=0$, shift S plus $2 k$-bit register pair A-MQ left and subtract the k bits divisor Y from S-A (1 plus k bits); else if sign of A, $S=1$, shift S plus $2 k$-bit register pair A $M Q$ left and add the divisor Y into S-A (1 plus k bits)

- Assign MQ_{0} as per S

Non- Restoring Algorithm

3. Repeat step 2 again till the total number of operations $=k$.
4. If at the last step, the sign of A in $S=1$, then add Y into S - A to leave the correct remainder into A and also assign MQ_{0} as per S , else do nothing.
5. A has the remainder and $M Q$ has the quotient

Division of 4-bit number by 7-bit dividend by Non Restoring Algorithm

Step	S-flag *	First Register for A	Second Register for MQ	Action Taken	Number of operations (instructions)
Start	0	0 b 0000	0 b 0000	Clear S, A, MQ	3 for clearing C, A and M
	0	0 b 0001	0 b 1110	Load dividend X (lower k bits) in $M Q_{k}=1$ and $M Q_{0}$ and dividend higher k- -1 bits in A	2 for loading A and MQ
Step 0A	1	1110	1110	Subtract Y from S- A, because S $=0$ result in S- A	1
Step 0B	1	1110	1110	MQ $_{0}=0$ as S $=1$	1
Step 0C	1	1101	1100	Shift left S-A-M	2

Division of 4-bit number by 7-bit dividend by Non Restoring Algorithm

Step 1A	0	0000	1100	Add Y into S-A, because S $=1$	1
Step 1B	0	- 0000	- 1101	$\mathrm{MQ}_{0}=1$ as $\mathrm{S}=0$	1
Step 1C	0	0001	1010	Shift left S-A-M	2
Step 2A	1	1110	1010	Subtract Y into S-A, because S $=0$	1
Step 2B	1	- 1110	- 1010	$\mathrm{MQ}_{0}=0$ as $\mathrm{S}=1$	1
Step 2C	1	1101	0100	Shift left S-A-M	2
Step 3A	1	0000	0100	Add Y into S-A, because S $=1$	1
Step 3B	0	-0000	-0101	$\mathrm{MQ}_{0}=1$ as $\mathrm{S}=0$	1
Step 3C	0	0000	1010	Shift C-A-M	2
Last	0	0000	1010	Do not Add Y into S-A, because S $=0$ and make no change in MQ_{0}	1
Answer	0	Remainder $=$	0 ,	Quotient Decimal 10	Total 22

Summary

We learnt

- Division by successive subtraction is slowest
- Restoring Algorithm
- Non-Restoring Algorithm

End of Lesson 07 on Integer Division

