Chapter 03: Computer Arithmetic

Lesson 07: Integer Division

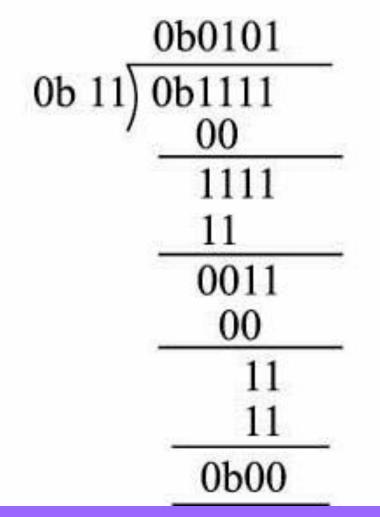
Objective

- Understand process of integer division
- Restoring Algorithm
- Non-restoring Algorithm

Division using successive subtraction

Division using successive subtraction

• Implemented on computer systems by repeatedly subtracting the divisor from the dividend


• Counting the number of times that the divisor can be subtracted from the dividend before the dividend becomes smaller than the divisor

Division 15 with 5

• Subtract repeatedly from 15, getting 10, 5, and 0 as intermediate results

•The quotient, 3, is the number of subtractions that had to be performed before the intermediate result became less than the dividend

15 ÷ 5

Too long Time

- For example, 2³¹ (one of the larger numbers representable in 32-bit unsigned integers) divided by 2 is 2³⁰, meaning that 2³⁰ subtractions would have to be done to perform this division by repeated subtraction
- On a system operating at 1 GHz, this would take approximately 1 s, far longer than any other arithmetic operation

Division using look-up table

Lookup Table Method

- Using pre-generated tables, these techniques generate 2 to 4 bits of the quotient in each cycle
- This allows 32-bit or 64-bit integer divisions to be done in a reasonable number of cycles

Division using Restoring Algorithm

- •Assume—X register k-bit dividend
- Assume— Y the *k*-bit divisor
- Assume S a sign-bit

- 1. <u>Start</u>: Load 0 into accumulator *k*-bit *A* and dividend X is loaded into the *k*-bit quotient register *MQ*.
- 2. <u>Step A</u>: Shift 2*k*-bit register pair A-MQ left
- 3. <u>Step B</u>: Subtract the divisor Y from A.

- 4. <u>Step C</u>: If sign of A (msb) = 1, then reset MQ_0 (lsb) = 0 else set = 1.
- 5. <u>Steps D:</u> If $MQ_0 = 0$ add Y (restore the effect of earlier subtraction).
- <u>6. Steps A to D</u> repeat again till the total number of cyclic operations = k.
- At the end, A has the remainder and MQ has the quotient

Division of 4-bit number by 7-bit dividend

Step	S-flag *	First Register for A	Second Register for MQ	Action Taken	Number of operations (instructions)
Start	0	0b 0000	0Ь 0000	Clear S, A, MQ	3 for clearing C, A and M
	0	0Ь 0001	0Ь 1110	Load dividend X (lower k bits) between MQ_{k-1} and MQ_0 and dividend higher bits in A	2 for loading A and MQ
Step 0A	0 /	0011	1100	Shift left S-A-M	2
Step 0B	0	0000	1100	Subtract Y from S-A, result in S-A	1
Step 0C	0	0000	1101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 0D	0	0000	_ 1101	Skip restore by adding as $S = 0$	1 (test S)
Step 1A	0-	0001	1010	Shift left S-A-M	2
Step 1B	1	1110	1010	Subtract Y from S-A, result in S-A	1
Step 1C	1	1110	1010	$MQ_0 = 0 \text{ as } S = 1$	1
Step 1D	0	0001	1010	Add Y into S-A to restore as $S = 1$	1

Division of 4-bit number by 7-bit dividend

~~r ·	Č.				*
Step 2A	0-	0011	0100	Shift left S-A-M	2
Step 2B	0	0000	0100	Subtract Y from S-A, result in S-A	1
Step 2C	0	0000	0101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 2D	0	_ 0000	0101	Skip restore as $S = 0$	1(test S)
Step 3A	0	0000	1010	Shift left S-A-M	2
Step 3B	1	1101	1010	Subtract Y from S-A, result in S-A	1
Step 3C	1	1101	1010	$MQ_0 = 0 \text{ as } S = 1$	1
Step 3D	0	0000	1010	Add Y into S-A to restore as $S = 1$	1
Answer	0	Remainder $= 0$,		Quotient Decimal 10	Total 25

* after the left shift from *msb* of *A*.

Division using Non-restoring Algorithm

• Assume— that there is an accumulator and MQ register, each of *k*-bits

• MQ_0 , (lsb of MQ) bit gives the quotient, which is saved after a subtraction or addition

• Total number of additions or subtractions are *k*-only and total number of shifts = *k* plus one addition for restoring remainder if needed

- Assume—that X register has (2*k*–1) bit for dividend and Y has the *k*-bit divisor
- Assume— a sign-bit S shows the sign

- Load (upper half *k*-1 bits of the dividend X) into accumulator *k*-bit A and load dividend X (lower half bits into the lower *k* bits at quotient register MQ
- Reset sign S = 0
- Subtract the k bits divisor Y from S-A (1 plus k bits) and assign MQ₀ as per S

2. If sign of A, S = 0, shift S plus 2*k*-bit register pair A-MQ left and subtract the *k* bits divisor Y from S-A (1 plus *k* bits); *else if* sign of A, S = 1, shift S plus 2*k*-bit register pair A-MQ left and add the divisor Y into S-A (1 plus *k* bits)

• Assign MQ₀ as per S

- 3. Repeat step 2 again till the total number of operations = k.
- 4. If at the last step, the sign of *A* in S = 1, then add Y into *S*-*A* to leave the correct remainder into *A* and also assign MQ₀ as per S, else do nothing.
- 5. A has the remainder and MQ has the quotient

Division of 4-bit number by 7-bit dividend by Non Restoring Algorithm

Step	S-flag *	First Register for A	Second Register for MQ	Action Taken	Number of operations (instructions)
Start	0	060000	060000	Clear S, A, MQ	3 for clearing C, A and M
	0	060001	0Ь1110	Load dividend X (lower k bits) in $MQ_{k=1}$ and MQ_0 and dividend higher k-1 bits in A	2 for loading A and MQ
Step 0A	1	1110	1110	Subtract Y from S-A, because $S = 0$ result in S-A	1
Step 0B	1	/ 1110	/ 1110	$MQ_0 = 0 \text{ as } S = 1$	1
Step 0C	1	1101	1100	Shift left S-A-M	2

Division of 4-bit number by 7-bit dividend by Non Restoring Algorithm

Step 1A	0	0000	1100	Add Y into S-A, because $S = 1$	1
Step 1B	0	/ 0000	/ 1101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 1C	0 ×	0001	1010	Shift left S-A-M	2
Step 2A	1	1110	1010	Subtract Y into S-A, because $S = 0$	1
Step 2B	1	/1110	1010	$MQ_0 = 0 \text{ as } S = 1$	1
Step 2C	1	1101	0100	Shift left S-A-M	2
Step 3A	1	0000	0100	Add Y into S-A, because $S = 1$	1
Step 3B	0	_0000	0101	$MQ_0 = 1 \text{ as } S = 0$	1
Step 3C	0 -	0000	1010	Shift C-A-M	2
Last	0	0000	1010	Do not Add Y into S-A, because S = 0 and make no change in MQ_0	1
Answer	0	Remainder =	0,	Quotient Decimal 10	Total 22

Summary

We learnt

- Division by successive subtraction is slowest
- Restoring Algorithm
- Non-Restoring Algorithm

End of Lesson 07 on **Integer Division**