Chapter 03: Computer Arithmetic

Lesson 05:
 Arithmetic Multiplication Circuits

Objective

- Learn Booth encoding
- Learn fast multiplication by bit pairing

Multiplication Process By Booth's Encoding Algorithm

Multiplication

- Multiplication of two's-complement numbers more complicated
- Because performing a straightforward unsigned multiplication of the two'scomplement representations of the inputs does not give the correct result

Multiplication

- Multipliers could be designed to convert both of their inputs to positive quantities and use the sign bits of the original inputs to determine the sign of the result
- Increases the time required to perform a multiplication

Booth's Algorithm

- A technique called Booth encoding
- To quickly convert two's-complement numbers into a format that is easily multiplied

Booth encoding

- Apply encoding to the multiplier bits before the bits are used for getting partial products

1. If $\mathrm{i}^{\text {th }}$ bit b_{i} is 0 and $(\mathrm{i}-1)^{\text {th }}$ bit $\mathrm{b}_{\mathrm{i}-1}$ is 1 , then take b_{i} as +1
2. If $\mathrm{i}^{\text {th }}$ bit b_{i} is 1 and $(\mathrm{i}-1)^{\text {th }}$ bit $\mathrm{b}_{\mathrm{i}-1}$ is 0 , then take b_{i} as -1

Booth encoding

3. If $\mathrm{i}^{\text {th }}$ bit b_{i} is 0 and $(\mathrm{i}-1)^{\text {th }}$ bit $\mathrm{b}_{\mathrm{i}-1}$ is 0 , then take b_{i} as 0
4. If $\mathrm{i}^{\text {th }}$ bit b_{i} is 1 and $(\mathrm{i}-1)^{\text {th }}$ bit $\mathrm{b}_{\mathrm{i}-1}$ is 1 , then take b_{i} as 0

- When lsb $\mathrm{b}_{0}=1$, assume that it had b_{-1} as 0 , thus take $b_{0}=-1$

Example

$$
\begin{aligned}
& \text { Multiplier After Booth's conversion } \\
& 01110000 \longrightarrow+100-10000 \\
& 01110110 \longrightarrow+100-1+10-10 \\
& 00000111 \longrightarrow 0000+100-1 \\
& 01010101 \longrightarrow+1-1+1-1+1-1+1-1
\end{aligned}
$$

Multiplication by Booth's Encoding

- Booth's algorithm permits skipping over 1s and when there are blocks of 1 s
- It improves performance significantly

Multiplication using Booth's algorithm

11101100_{b} Two's complement 0000000000010100 $\times 00000101_{\mathrm{b}}$ Two's complement $\times 1111111111111011$
$\longrightarrow 000000000000-1+10-1$
$x-1$
$\xrightarrow{1111111111101100} 000000000000$
$d 000000000000000$
0000000000010100
1111111111101100
0000000000000000 $|$
$=-100$

$$
\begin{aligned}
& x+1 \\
& x-1
\end{aligned}
$$

$$
=-100
$$

$1 1 1 \longdiv { 1 1 1 1 1 1 1 1 0 1 1 0 0 }$
d00000000 0000000
0000000000010100
1111111111101100
0000000000000000

Present Case

- Observe- the addition of 0000000000010100 or its two's complement is done only thrice, in contrast to the addition of 0000000000010100 done 15 times in earlier described procedures without using Booth's algorithm
- The adder circuit takes longer period to implement than finding -1 and +1 and 0 's for multiplier

Worst Case

- The worst case of an implementation using Booth's algorithm is when pairs of 01s or 10s occur very frequently in the multiplier

Fast Multiplication Process

Fast Multiplication

- Fast multiplication by a combination of methods

1. Bit Pair Recording of Multipliers and

2. Carry Save Addition of the Sums

Carry Save Addition in the Sums of partial products

Two-dimensional arrays of full adders to get partial products

- The carry of each FA connects the neighboring left side cell in each row
- Each FA in a cell gives the carry out as input to the next row left column FA
- The carry addition method, which reduces the time taken for additions

Carry Save method for faster multiplication

Two-dimensional arrays of full adders to get partial products

- Downward diagonal full arrows as an example
- An FA, instead of getting the ripple carry input from the previous input column of a row is given carry-input from previous column's previous row output
- Refer upward dashed arrows as an example

Two-dimensional arrays of full adders to get partial products

- For example, carry out from first row's rightmost column full adder FA is given as input to the second row's right-most FA, carry out from the second row's right- most FA is given as input to the third row's right-most FA, and so on
- Each FA in a cell gives the carry out as input to next row's left column FA
- Delay through carry save adder is less than carry ripple through adder

Bit Pair Recording of Multipliers

Bit Pair Recording of Multipliers

- When Booth's algorithm is applied to the multiplier bits before the bits are used for getting partial products- Get fast multiplication by pairing

1. If pair $\mathrm{i}^{\text {th }}$ bit and $(\mathrm{i}-1)^{\text {th }}$ Booth multiplier bit $\left(B_{i}, B_{i-1}\right)$ is $(+1,-1)$, then take $B_{i-1}=+1$ and $\mathrm{B}_{\mathrm{i}}=0$ and pair $(0,+1)$

Bit Pair Recording of Multipliers

2. If pair $\mathrm{i}^{\text {th }}$ bit and $(\mathrm{i}-1)^{\text {th }}$ Booth multiplier bit $\left(\mathrm{B}_{\mathrm{i}}\right.$, $\mathrm{B}_{\mathrm{i}-1}$) is $(-1,+1)$, then take $\mathrm{B}_{\mathrm{i}-1}=-1$ and $\mathrm{B}_{\mathrm{i}}=0$ and make pair $(0,-1)$
3. If pair $\mathrm{i}^{\text {th }}$ bit and $(\mathrm{i}-1)^{\text {th }}$ Booth multiplier bit $\left(\mathrm{B}_{\mathrm{i}}\right.$
, $\mathrm{B}_{\mathrm{i}-1}$) is $(+1,0)$, then take $\mathrm{B}_{\mathrm{i}-1}=2$ and $\mathrm{B}_{\mathrm{i}}=0$ and make pair $(0,+2)$
4. If pair $i^{\text {th }}$ bit and $(i-1)^{\mathrm{th}}$ Booth multiplier bit $\left(\mathrm{B}_{\mathrm{i}}\right.$, $\mathrm{B}_{\mathrm{i}-1}$) is $(-1,0)$, then take $\mathrm{B}_{\mathrm{i}-1}=-2$ and $\mathrm{B}_{\mathrm{i}}=0$ and make pair $(0,-2)$

Example

Multiplier

01110000

After Booth's conversion +100-10000

After pairing
0+20-10000

Example

Multiplier

01110110
After Booth's conversion
$+100-1+10-10$
After pairing

$$
0+200-10-10
$$

Example

Multiplier
 00000111
 After Booth's conversion
 $0000+100-1$
 After pairing
 $00000+20-1$

Example

Multiplier

01010101
 After Booth's conversion

+1-1+1-1+1-1+1-1
After pairing

$$
0+10+10+10+1
$$

Worst case- 0 1 $10110 \begin{array}{llll}1 & 0 & 1\end{array}$

- In the worst case also, the number of additions in an 8-bit multiplier has reduced to 4

Use of triplets

- $b_{i+1} 1$
- $\mathrm{b}_{\mathrm{i}} 1 \quad \mathrm{Bi}=0$
- $b_{i-1} 1$
- $b_{i+1} 1$
- $\mathrm{b}_{\mathrm{i}} 1 \quad \mathrm{Bi}=-1$
- $\mathrm{b}_{\mathrm{i}-1} 0$

Use of triplets

- $\mathrm{b}_{\mathrm{i}+1} 1$
- $\mathrm{b}_{\mathrm{i}} 0 \quad \mathrm{Bi}=-2$
- $b_{i-1} 0$
- $b_{i+1} 1$
- $\mathrm{b}_{\mathrm{i}} 0 \quad \mathrm{Bi}=-1$
- $\mathrm{b}_{\mathrm{i}-1} 1$

Use of triplets

- $b_{i+1} 0$
- $\mathrm{b}_{\mathrm{i}} 0 \quad \mathrm{Bi}=0$
- $b_{i-1} 0$
- $\mathrm{b}_{\mathrm{i}+1} 0$
- $\mathrm{b}_{\mathrm{i}} 0 \quad \mathrm{Bi}=+1$
- $b_{i-1} 1$

Use of triplets

- $b_{i+1} 0$
- $\begin{array}{cc}b_{i} & 1 \\ B i & =+1\end{array}$
- $b_{i-1} 0$
$\begin{array}{llll}\text { - } & \mathrm{b}_{\mathrm{i}+1} & 0 & \\ \text { - } & \mathrm{b}_{\mathrm{i}} & 1 & \mathrm{Bi}=+2\end{array}$
- $b_{i-1} 1$

Summary

We learnt

- Multiplication circuit becomes fast by Booth's algorithm
Faster by Bit pair encoding
- Faster by triplets

End of Lesson 5 on Arithmetic Multiplication Circuits

