Chapter 03: Computer Arithmetic

Lesson 04:
Arithmetic OperationsMultiplication of Integer numbers

Objective

- Understand the Computer arithmetic operations in Multiplication with unsigned numbers
- Time Taken in Multiplication
- Signed Operand Multiplication of Integers

Multiplication Process

Multiplication

- Unsigned integer multiplication- handled in a similar manner to the way we multiply multidigit decimal numbers
- The first input to the multiplication is multiplied by each bit of the second input separately, and the results added by binary multiplication

Multiplication Process

- Simplified by the fact that the result of multiplying a number by a bit is either the original number or 0
- Hardware less complex

Multiplication Process 11×5

- Multiplying 11 (0b1011), multiplicand (Y) by 5 (0b0101), multiplier (X)
- First, 0b1011 is multiplied by each bit of 0b0101 to get the partial products shown
- Then, the partial products are added to get the final result

Example of Multiplication Process

Multiplication Process

- Note that each
'Successive partial product is shifted one position to the left to account for the differing place values of the bits in the second input'

Multiplication Circuit

Example
 of a Multiplication Circuit

- A method for implementation of the product of two 8-bit numbers using a sequential circuit and one number 8-bit adder
- Assume that two 8-bit registers, A (accumulator) and M (multiplier) are used for addition
- A-M 16-bit combination of two registers for the partial product at each step 0 to Step 7

Example of a Multiplication Circuit

- Let Y (multiplicand) $=0 \mathrm{~b} 10111011$ (an unsigned number 187 decimal)
- Let X (multiplier) = 0b 01010101 (an unsigned number 85 decimal)

Step 1 of a Multiplication Process

1. The addition (denoted by step A) is done 8 times

- Shift (denoted by step B) is also done 8 times

Step 2 of a Multiplication Process

2. Shift is to the right when we use multiplier bits from msb down to lsb during steps 0 to 7

- Shift takes 17 -bits into account: the carry plus A-bits and M-bits
- C will shift to msb of A in step B

Step 3 of a Multiplication Process

3. Each step has two parts, A and B, and a C-flag of 1-bit stores the -carry out shiftright from maximum significant bit (msb) at A

Step 4 of a Multiplication Process

4. Two registers shift and one addition per step $=16$ shifts of 8 -bit registers and 8 additions of 8 -bit registers $=24$ operations + 4 clear plus load $\mathrm{M}=28$
In the present example, the total number of expected operations $=24,4$ addition operations did not occur due to the nature of the multiplier

Sequential circuit and 8 -bit multiplier implementation by 16 steps (8-cycles) of addition and shifts

Schaum's Outline of Theory and Problems of Computer Architecture

Steps in two Dimesnsional Array to get partial product

Step	C-flag *	First Register for A	Second Register for M	Action Taken	Number of operations (instructions)
Start	0	0 b 00000000	$0 \mathrm{~b} 0000000 \underline{0}$	3 for clearing C, A and M	
	0	0 b 00000000	$0 \mathrm{~b} 0101010 \underline{1}$	Load Multiplier X in M	1
Step 0A	0	10111011	$0101010 \underline{1}$	Add multiplicand Y in A, result in C- A	1
Step 0B	0	01011101	$1010101 \underline{0}$	Shift C-A-M	2
Step 1A	0	01011101	10101010	Do not add (lsb of M=0)	$0(1)$
Step 1B	0	00101110	$1101010 \underline{1}$	Shift C-A-M	2
Step 2A	0	11101001	11010101	Add Y, result in C- A	1
Step 2B	0	01110100	$1110101 \underline{0}$	Shift	2

Steps in two Dimesnsional Array to get partial product

Step 3A	0	01110100	$1110101 \underline{0}$	Do not add (lsb = 0)	$0(1)$
Step 3B	0	00111010	01110101	Shift C-A-M	2
Step 4A	0	11110101	01110101	Add Y, result in C-A	1
Step 4B	0	-01111010	- 10111010	Shift	2
Step 5A	0	01111010	10111010	Do not add ($1 \mathrm{sb}=0$)	$0(1)$
Step 5B	0	00111101	- 01011101	Shift C-A-M	2
Step 6A	0	11111000	01011101	Add Y, result in C- A	1
Step 6 B	0	$\bigcirc 01111100$	- $0010111 \underline{0}$	Shift C-A-M	2
Step 7 A	0	01111100	00101110	Do not add ($\mathrm{lsb}=0$)	0 (1)
Step 7 B	0	$\bigcirc 00111110$	- 00010111	Shift C-A-M	2
Answer	0	$0011111000010111=0 \times 3 \mathrm{e} 17$		Decimal 15895	Total 24 (28)

* after the shift-left from the msb of A.

Two dimensional array of Full adders to get partial products

Multiplier X Bits	Input Y to Full Adders	Cycle Number	7	6	5	4	3	2	1	0
	0000		0	0	0	0	0	0	0	0
$1(\mathrm{lsb})$	00001011	0					1	0	1	1
0	0000	1				0	0	0	0	\ldots
1	000101100	2			1	0	1	1	$\cdots \cdots$	
$0(\mathrm{msb})$	0000	3		0	0	0	0	$\cdots \cdots$		
			FA							
			FA							
			FA	FA	FA	FA	FA	FA		
			FA	FA	FA	FA	FA			
			FA	FA	FA	FA				
			FA	FA	FA					
				FA	FA					

Arrow in a column shows implementation of shift.

Time taken in Multiplication

Example: Compute the time taken for an 8bit multiplication using the circuit

- Assume that an 8 -bit adder adds in 0.008 $\mu \mathrm{s}$, and a shift of carry bit +8 -bit accumulator and multiplier registers' shift by one bit after each addition takes 0.002 $\mu \mathrm{s}$.
- Assume that the time for other operations is $0.001 \mu \mathrm{~s}$

Solution

- The multiplication circuit design has 8 -bit addition and shift lefts, both 8-times
- There will be 8 -bit additions in 8 -bit multiplier and 8-times shifts

Solution

- Time in 2 registers and carry clear $=0.003 \mu \mathrm{~s}$
- Time in register loads $\quad=0.001 \mu \mathrm{~s}$
- Time taken for 8 -bit addition before the shift = $0.008 \mu \mathrm{~s}$.
- Time taken for 1-bit shift $=0.002 \mu \mathrm{~s}$
- Time taken for 8 -add and 8 -shifts $=$ $0.003 \mu \mathrm{~s}+0.001 \mu \mathrm{~s}+8 \times(0.008+0.002) \mu \mathrm{s}$ $=8 \times 10 \mathrm{~ns}+4=84 \mathrm{~ns}$
- Multiplication Time $=84 \mathrm{~ns}$

Signed operand multiplication of integers

Signed Integer Multiplication

- Signed integer multiplication handled in a manner similar to the way unsigned integers
- Multiply multidigit decimal numbers and accumulate the partial products

Multiplication Process

- However, for an n-bit signed multiplier, there should be a sign extension up to 2^{n} bits and we must find the two's complement of both

Multiplication of signed numbers

> Ob00000101 Two's complement $\longrightarrow 0000000000010100$ $\times 0 \mathrm{~b} 00000101$ Two's complement

Summary

We learnt

- Multiplication process is a process in which the first input to the multiplication is multiplied by each bit of the second input separately
- The results added by binary multiplication Successive partial product shifted one position to the left to account for the differing place values of the bits in the second input

End of Lesson 4 on Arithmetic OperationsMultiplication of Integer numbers

