Chapter 03: Computer Arithmetic

Lesson 03:
Arithmetic OperationsAdder and Subtractor circuits Design

Objective

- To understand adder circuit - Subtractor circuit - Fast adder circuit

Adder Circuit

Full Adder Circuit

Ripple carry propagation addition method using full adder circuit

- Compute $\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}-1}$
- Each bit output z_{i} based on three bits- the bits at the inputs and carry-in
- Carry-in- Generated by the next-lower bit of computation

Ripple carry propagation in 8-bit adder circuit based on 8 full adders

Schaum's Outline of Theory and Problems of Computer Architecture

Speed of Adder

- Speed of the circuit determined by time it takes for the carry signals to propagate through all the full adders
- Each full adder can't perform its part of the computation until all the full adders to the right of it have completed their parts
- The computation time grows linearly with the number of bits in the inputs

Subtractor Circuit

Subtraction

- Handled by similar methods, using adder modules that compute the difference between two numbers by adding the X and two's complement of Y
- An adder-based adder-cum-subtractor circuit based on an adder circuit
- Uses additional circuit of XOR gates

XOR gate in adder-cum-subtractor

- Finds the 1's complement when subtraction of Y is to be done
- Does nothing when addition of Y is to be done used in the adder circuit

k-bit adder/subtractor Using Two's complement converter circuit with Y

Fast Adders (High Speed Adders) and Carry Look Ahead Addition

Design of Fast Adders (High Speed Adders) and Carry Look Ahead Addition

- Ripple carry adder computation time grows linearly with the number of bits in the inputs
- Use of binary logic cells
- Output stage sum bit $=s_{i}=x_{i}$. XOR. y_{i}. XOR. C_{i}
- Output stage carry bit for input to (i +1)th stage
- $=C_{i}+1=\left(\mathrm{x}_{i}\right.$. AND. $\left.\mathrm{y}_{i}\right)$. OR. $\left(\mathrm{x}_{i}\right.$. AND. $\left.\mathrm{C}_{i}\right)$. OR .
(y_{i}. AND. Ci)
- $=\mathrm{C}_{i}+1=\left(\mathrm{x}_{i} \cdot\right.$ AND. $\left.\mathrm{y}_{i}\right)$. OR. [($\mathrm{x}_{i} \cdot$ OR. $\left.\mathrm{y}_{i} \cdot\right)$.AND.
$\left.\mathrm{C}_{i}\right)$]

Design of Fast Adders (High Speed Adders) and Carry Look Ahead Addition

- Output stage sum bit $=s_{i}=x_{i}$.XOR. y_{i}. XOR. C_{i}
- Output stage carry bit for input to (i+1)th stage
$=\mathrm{C}_{i}+1=\left(\mathrm{x}_{i} \cdot\right.$ AND. $\left.\mathrm{y}_{\mathrm{i}}\right)$. OR. $\left(\mathrm{x}_{i}\right.$. AND. $\left.\mathrm{C}_{i}\right)$. OR . (y_{i}. AND. Ci)
$=\mathrm{C}_{i}+1=\left(\mathrm{x}_{i} \cdot\right.$ AND. $\left.\mathrm{y}_{i}\right)$. OR. [($\mathrm{x}_{i} \cdot$ OR. $\mathrm{y}_{i} \cdot$.).AND. $\left.\left.\mathrm{C}_{i}\right)\right]$
- Ripple carry adder computation time grows linearly with the number of bits in the inputs

Design of Fast Adders (High Speed Adders) and Carry Look Ahead Addition

- Use of binary logic cells
- Use k-full adders 0th to $(k-1)$ th for k-bit addition
- An i-th stage adder circuit two logic termsGenerating (using x bit and y bit) first term of expression
- Generating component- $g_{i}=x_{i}$. AND. y_{i}

Propagating component

- Propagating component (us carry, x and y) second term of expression
- $p_{i}=x_{i}$ OR y_{i},
- An output stage carry, $C_{i+1}=g_{i}+p i . C_{i}$
- C_{i} depends on C_{i-1}
- C_{i-1} depends on C_{i-2}, and so on
- C_{i-1} is $g_{i-1}+p_{i-1} \cdot C_{i-1}$

Generating and propoagating components and Carry in CGPS cell

- $g_{i}=x_{i}$ AND. y_{i} and $p_{i}=x_{i}$ OR y_{i},
- $C_{i+1}=g_{i}+p_{i} \cdot g_{i-1}+p_{i} \cdot p_{i-1} \cdot g_{i-2}$
$+p_{i} \cdot p_{i-1} \cdot p_{i-2} \cdot g_{i-3}+\ldots . .+p_{i} \cdot p_{i-1} \cdot p_{i-2} \cdot \ldots p_{0} C_{0}$
- C_{4} can be computed ahead using a binary logic cell having p_{i} s and g_{i} in the inputs
- C_{4} input to next binary logic cell

Using Binary Logic Cell outputs $g_{0}, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{g}_{1}$,

Use of 4-binary logic cells

Summary

We Learnt

- Full adder- Each bit output z_{i} based on three bits- the bits at the inputs and carry-in Ripple carry adder computation time grows linearly with the number of bits in the inputs Adder cum subtractor using XORs for two's complement generation
- Fast addition by carry-look-ahead computations

End of Lesson 3 on Arithmetic OperationsAdder and Subtractor circuits Design

