Chapter 03: Computer Arithmetic

Lesson 02:
 Arithmetic OperationsAddition and subtraction

Objective

- Understand sign extension of 2's complement number
- Negation
- Addition
- Subtraction

Sign Extension

Sign Extension

- Used in order to equalize the number of bits in two operands for addition and subtraction
- Sign extension of 8-bit integer in 2's complement number representation becomes 16bit number 2's complement number representation by sign extension

Sign Extension

- When m-bit number sign extends to get n-bit number then $\mathrm{b}_{\mathrm{m}-1}$ copies into extended places upto $\mathrm{b}_{\mathrm{n}-1}$.
- msb (b7) in an 8 bit number copies into b15, b14, b13, b12, b11, b10, b9 and b8 to get 16-bit sign extended number in 2 's complement representation

Examples

- 01000011_{b} becomes $0000000001000011_{\mathrm{b}}$
- 11000011_{b} becomes $1111111111000011_{\mathrm{b}}$

Negation

Two's-complement

- Original value: Ob00001100 (12)
- Negate each bit: 0b11110011
- Add 1: Ob11110100 (Two'scomplement representation of -12)

Perform Two's complement for negation

- The 8 -bit representation of +12 is $0 b 00001100$
- The 8 -bit two's-complement representation of -12 is 0b11110100
- Add the 8 -bit two's-complement representation of -12 , and +12 Ob0000 1100
$+\underline{0 b 11110100}$
0b0000 0000

Addition

Carry

carry out of

low bit during addition

Ob 1001

Ob 0101
Ob 1110

Example + 3-4 using in 4-bit two'scomplement notation

- The 4 -bit two's-complement representations of +3 and -4

0b0011 and
Ob1100
Adding-
0b1111
Answer- Two's-complement representation of
-1

Example -3-4 in 4-bit two's-complement notation

- 4-bit 2's complement numbers can only be between +7 and -8
- To perform subtraction - Negate the second operand and add
- Thus, actual computation- perform $-3+(-4)$
- The two's-complement representations of -3 and -4 are 0b1101 and 0b1100

Example - 3 - 4 in 4-bit two's-complement notation

- Adding 0b1101 and 0b1100
- Get 0b11001 (a 5-bit result, counting the overflow)
- Discarding the fifth bit when fourth bit = 1 , we get 0b 1001
- Answer-, the two's complement representation of -7

Compute -7-4 using Sign Extension

- 4-bit 2's complement numbers can only be between +7 and -8
- To perform subtraction- Negate the second operand and add
- Thus, actual computation- performed -7 + (-4) after sign extension
- The two's-complement representations of -7 and -4 after sign extension $=$ Ob11111001 and Ob11111100

Compute -7-4 using Sign Extension

- Adding 0b11111001 and 0b11111100
- Get 0b111110101 (a 9-bit result, counting the overflow)
- Don't discard the ninth bit when eight bit = 0
- Taking the ninth bit as sign of the result we get 0 b 100001011 , the results is -11_{d}

Subtraction

Subtration of two positive numbers

```
Ob 00010010
    First step: find two's complement
    0b00010000 < < Number 16
    0b11101111 \leftarrow One's complement by inverting bits
    0b1}\leftarrow Add 1
    Two's complement of 16 bit
    0b11110000
    Carry from low bits on addition
Second step: addition of first number with two's complement.
```


Subtraction +5 with +3

Borrow out of high bit of subtraction 0b 10001 Ob 01101

0b 0100

Borrow

Borrow out of

high bit of subtraction

-1

0b $00011 \quad$ (+1)
 Ob $0<011$ Subtract (+3)

Ob11 11110 Answer (-2)
$+5-4-$ Add the quantities +5 and -4 in 4 -bit two's-complement notation

- 4 -bit two's-complement representations of +5 and -4 are 0b0101 and 0b1 100
- Adding these together gives 0b10001, which is the two's-complement representation of +1
- 3-4-Subtract 4 from - 3 in 4-bit two'scomplement notation
- 4-bit 2's complement numbers can only be between +7 and -8
- To perform subtraction, we negate the second operand and add
- Thus, actual computation we want to perform is $-3+(-4)$
- The two's-complement representations of -3 and -4 are 0 b 1101 and 0 b 1100

Subtract 4 from - 3

- Adding these quantities, we get 0b11001 (a 5bit result, counting the overflow)
- Discarding the fifth bit when fourth bit = 1 , we get 0b 1001, the two's complement representation of -7

Subtract 4 from - 11

- 4-bit 2's complement numbers can only be between +7 and -8 . To perform subtraction, we use 8 -bit numbers

Example

- Find 0b00000100 - 0b11110101
- Get 0b100000111 (a 9-bit result, counting the overflow)
- We don't discard the ninth bit when eight bit = 0
- Taking the ninth bit as sign of the result we get Ob1 00000111 , the results is $-(7)$

Summary

We learnt

- Sign Extension generates a higher bit two's complement representation of a number
- Addition uses carry to left
- Implement by a circuit as negation followed by addition is subtraction
- Subtraction needs borrow to right and therefore, it is easier to design circuit which does negation of second operand and then performs add operation

End of Lesson 2 on Arithmetic OperationsAddition and subtraction

