Chapter 03: Computer Arithmetic

Lesson 01:
 Representations of Positive and Negative
 Integers

Objective

- Understand the representations of positive and negative integers
- Understand the representations for unsigned and signed integers
- Decimal, Binary and Hexadecimal Numbers
- Positive Only Integers Numbers
- Sign-magnitude representations
- Two's complement Representation
- Finding 2's complement

Digital system's signaling convention

Digital system's signaling convention

- Determines how analog electrical signals are interpreted as digital values 0 or 1
- Mapping of to Bits can be in terms of either a Voltage, current, frequency, phase in analog electrical signals

Mapping of Voltages to Bits

Binary, hexadecimal and decimal representation

Convention Postfix band h

- "b" postfix to identify them as binary, rather than decimal numbers
- "h" postfix to identify them as hexadecimal, rather than decimal numbers

Binary Numbers

- In base-10 arithmetic, numbers represented as the sum of multiples of each power of 10 , so the number $1543=(1 \times 103)+(5 \times 102)+(4 \times 101)$ $+(3 \times 100)$
- Positive integers are represented using a placevalue binary (base-2) system- similar to the place-value system used in decimal (base-10) arithmetic

Binary, hexadecimal and decimal representation examples

- $00100111_{\mathrm{b}}=\left(0 \times 2^{7}\right)+\left(0 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+(0 \times$ $\left.2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=39$
- $27_{\mathrm{h}}=\left(2 \times 16^{1}\right)+\left(7 \times 16^{0}\right)=39_{\mathrm{d}}$

Convention Prefix 0b and 0x

- "Ob" to identify them as binary, rather than decimal numbers
- " $0 x$ " to identify them as hexadecimal, rather than decimal numbers

Decimal, Binary and Hex numbers

- $0 \quad 0 \mathrm{~b} 0000$ or $0000_{\mathrm{b}} 0 x 0$ or 0_{h}
- $40 b 0100$ or $0100_{b} 0 x 4$ or 4_{h}
- 9 0b1001 or $1001_{b} 0 x 9$ or $9 h$
- 130 b 1101 or $1101_{\mathrm{b}} 0 x D$ or D_{h}
- 150 b 1111 or $1111_{\mathrm{b}} 0 \mathrm{xF}$ or F_{h}

Hexadecimal Notations

Decimal Number	Binary Representations	Hexadecimal Representation
0	0 b 0000	0 x 0
1	0 b 0001	0 x 1
2	0 b 0010	0 x 2
3	0 b 0011	0 x 3
4	0 b 0100	0×4
5	0 b 0101	0×5
6	0 b 0110	0 x 6
7	0 b 0111	0 x 7
8	0 b 1000	0 x 8
9	0 b 1001	0 x 9
10	0 b 1010	0 xA
11	0 b 1011	0 xB
12	0 b 1100	0 xC
13	0 b 1101	$0 \times \mathrm{xD}$
14	0 b 1110	0 xE
15	0 b 1111	0 xF

Schaum's Outline of Theory and Problems of Computer Architecture

Integer Number Representations

Positive Only Integers (unsigned integers)

Positive Only Integers (unsigned integers)

- Positive integers represented using a place-value binary (base-2) system with msb also having a place value
- $0 \mathrm{~b} 00100111=\left(0 \times 2^{7}\right)+\left(0 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+(0 \times$ $\left.2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=39$
- msb 0 is also having a places value
- $0 \mathrm{~b} 00100111=\left(1 \times 2^{7}\right)+\left(0 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+(0 \times$ $\left.2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=$ $128_{\mathrm{d}}+39_{\mathrm{d}}=167_{\mathrm{d}}$

Positive Only Integers (8-bit unsigned integers)

- $0 b 11100111=\left(1 \times 2^{7}\right)+\left(1 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+(0 \times$ $\left.2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=$ 231
- 8 bit unsigned number can be between 0 and 255-0 and 2^{8-1}

Positive Only Integers (16-bit unsigned integers)

- $0 b 1000000011100111=\left(1 \times 2^{15}\right)+\left(1 \times 2^{7}\right)+(1$ $\left.\times 2^{6}\right)+\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+$ $\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=32999$
- 16 bit unsigned number can be between 0 and $65535-0$ and 2^{16-1}

Positive Only Integers (32 bit- unsigned integers)

- $0 \times 10000000=\left(1 \times 16^{7}\right)+\left(0 \times 16^{6}\right)+\left(0 \times 16^{5}\right)$ $+\left(0 \times 16^{4}\right)+\left(0 \times 16^{3}\right)+\left(0 \times 16^{2}\right)+\left(0 \times 16^{1}\right)+$ $\left(0 \times 16^{0}\right)=268435456$
- 32 bit unsigned number can be between 0 and 4294967295, (0 and 2^{32-1} or 0 and $16^{7}-1$)

Representing of Positive and negative Numbers (Signed Numbers)

Representing of Positive and negative Numbers (Signed Numbers)

- Sign-magnitude representation uses msb (maximum significant bit) $=0$ for the +ve number and 1 for -ve number)

sign

Sign magnitude integer number

- Positive integers represented using a place-value binary (base-2) system with msb do not have a place value
- Ob00100111 $=+\left[\left(0 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\right.$ $\left.\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)\right]=39$

Sign magnitude integer number

- Positive integers represented using a place-value binary (base-2) system with msb do not have a place value
- $\mathrm{msb}=1--\mathrm{ve}$ number
- $=0-+$ ve number
- $0 \mathrm{~b} 10100111=-\left(0 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+(0$ $\left.\times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=-39$

Sign magnitude integer number

- $0 b 11100111=-\left[\left(1 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\right.$ $\left.\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)\right]=-103$
- 8 bit signed number in signed value representation can be between +0 and +127 and - 0 and - 127
- + 0 and -0 is same- $0 b 10000000$ and 0b00000000 same

Sign magnitude integer number (16-bit signed integer)

- $0 b 1000000011100111=-231=$
- 16 bit signed number can be between +0 and + 32767 and - 0 and - 32767

Sign magnitude representation Integers (32 bit- signed integers)

- $0 x 8000000 \mathrm{~A}=-\left(0 \times 16^{6}\right)+\left(0 \times 16^{5}\right)+(0 \times$ $\left.16^{4}\right)+\left(0 \times 16^{3}\right)+\left(0 \times 16^{2}\right)+\left(0 \times 16^{1}\right)+(10$ $\left.\times 16^{0}\right)=-10$
- 32 bit signed number can be between +0 and +268435455 and
-0 and - 268435455

Two's complement Representation

Two's Complement Negation

Original value: 0 b 00001100 (12)
 Negate each bit: 0b11110011 (Two's-complement
 Add 1: Ob11110100 representation of-12)

Two's complement representation for integer number

- Positive integers represented using a place-value binary (base-2) system with msb do not have a place value
- Ob00100111 $=+\left[\left(0 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\right.$ $\left.\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)\right]=+39$

Two's complement Number as Signed Number

- Two's complement representation gives msb (maximum significant bit) $=0$ for + ve number and 1 for -ve number)
- But if $\mathrm{msb}=1$, then number is negative and value is as per its two's complement

Two;s complement integer number

- Negative integers represented using a placevalue binary (base-2) system with msb don't have a place value and - ve number is found when $\mathrm{msb}=1$ from two's complement
- $0 \mathrm{~b} 11111100=-$ [Two's complement of 11111100] $=-4$

Examples in Two's complement representation

- 00000000_{b}
- 00000001_{b}
- 00001100_{b}
- $01000001_{b}+65_{\mathrm{d}}$
- 01111110_{b}
- 01111111_{b}

$$
\begin{gathered}
0_{\mathrm{d}} \\
+1_{\mathrm{d}} \\
+12_{\mathrm{d}} \\
+65_{\mathrm{d}} \\
+126_{\mathrm{d}} \\
+127_{\mathrm{d}}
\end{gathered}
$$

Examples in Two's complement representation

- 11111111_{b} -1_{d}
- 11111110_{b}
-2_{d}
- 11111100_{b}
-4_{d}
- 10000000_{b}
-128_{d}

Two's complement integer number

- 8 bit two's complement integer number can be between 0 and +127 and -1 and -128
- Ob10000000 and 0b00000000 not same in two's complement representation

Two's complement integer number (16-bit signed integer)

- $0 \mathrm{bb} 1111111111111000=-8$
- 16 bit signed number can be between +32767 and - 32768

Steps in finding Two's complement representation

- If $m s b=0$, then remaining bits give $a+v e$ value
- If $\mathrm{msb}=1$, then all bits represent a -ve number with values found from 2's complement as follows:

2's complement

- 0b $11111111 \longrightarrow 00000000$ (Finds 1's complement by inversion)
- 00000001 (Increment by 1)
- Number is Negative and is -1

2's complement

- Ob $10000011 \longrightarrow 01111100$ (Finds 1's complement by inversion)
- 01111101 (Increment by 1)
- Negative Number - 125

2's complement

- Ob 10000000

01111111 (Finds 1's complement by inversion)

10000000 (Increment by 1)
Negative Number is -128 .

2's complement

- Ob 10001000

01110111 (Finds T's complement by

 inversion)
01111000 (Increment by 1)

Number is -120 .

Two's complement of a +ve number gives -ve number

- Ob $00000101+\mathrm{ve}$ Number $=+5 \mathrm{as} \mathrm{msb}=0$
- 11111010 (Finds 1's complement by inversion)
- 11111011 (Increment by 1)
- Negative Number -5 represented as 1111 1011

Two's complement Two times gives same number back

- Negation twice gives same
- Number 0b 00000101 (+5) Two's complement = $11111011(-5)$
- Number Ob 11111011 Two's complement = 00000101 (+5)
- $0 x 6000000 \mathrm{~A}=\left(6 \times 16^{7}\right)+\left(0 \times 16^{6}\right)+\left(0 \times 16^{5}\right)$ $+\left(0 \times 16^{4}\right)+\left(0 \times 16^{3}\right)+\left(0 \times 16^{2}\right)+\left(0 \times 16^{1}\right)+$ $\left(10 \times 16^{0}\right)=\left(6 \times 16^{7}\right)+10=+268435466$ because msb $=0_{b}$
- 32 bit signed number can be between $+2013265919_{\mathrm{d}}$ and -2013265920_{d}

(32 bit- signed integers)

- 0xFFFFFFA = 0b1111 1111111111111111 11111111 1010. One's complement $=0 \mathrm{~b} 0000$ 00000000000000000000 0101. Two's complement $=0$ b0000 0000000000000000 $00000101+0 \mathrm{~b} 1=0 \times 00000006=-10$
- 32 bit signed number can be between $+2013265919_{\mathrm{d}}$ and -2013265920_{d}

Summary

We learnt

- Understand the representations for unsigned and signed integers
- Decimal, Binary and Hexadecimal Numbers
- Unsigned n -bit number is between 0 and $+2^{\mathrm{n}}$ - 1 for an n-bit representation
- Signed n-bit number in sign-magnitude representation is between 0 and $+\left(2^{\mathrm{n}-1}-1\right)$ and 0 and $-\left(2^{\mathrm{n}-1}-1\right)$

We learnt

- Signed n -bit number in two's complement is between $+\left(2^{\mathrm{n}-1}-1\right)$ and $-\left(2^{\mathrm{n}-1}\right)$
- Two's complement is equivalent to negation of a number
- Two's complement is found by first finding l's complement (inversion) of all bits and then incrementing that by 1

End of Lesson 01 on
 Representations of Positive and Negative Integers

