Chapter 03: Computer Arithmetic

Lesson 01: Representations of Positive and Negative Integers

Objective

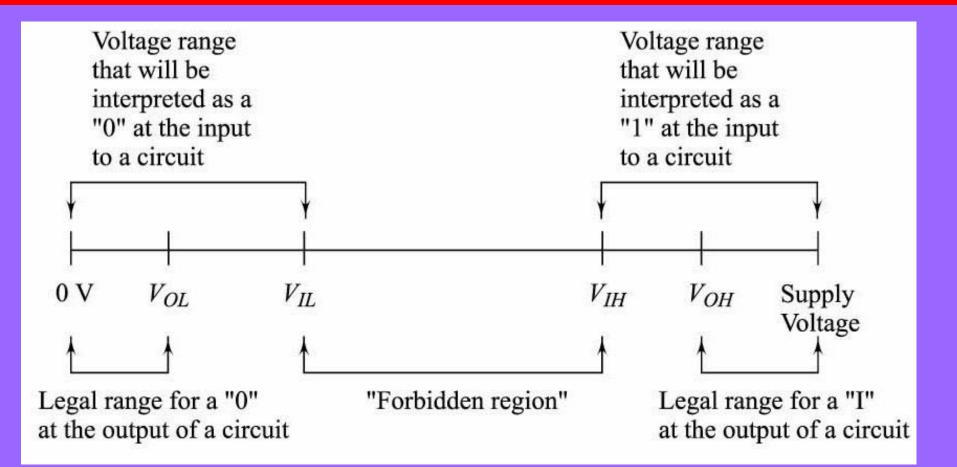
- Understand the representations of positive and negative integers
- Understand the representations for unsigned and signed integers
- Decimal, Binary and Hexadecimal Numbers
- Positive Only Integers Numbers
- Sign-magnitude representations
- Two's complement Representation
- Finding 2's complement

Digital system's signaling convention

Digital system's signaling convention

- Determines how analog electrical signals are interpreted as digital values 0 or 1
- Mapping of to Bits can be in terms of either a Voltage, current, frequency, phase in analog electrical signals

Mapping of Voltages to Bits



Binary, hexadecimal and decimal representation

Convention Postfix b and h

- "b" postfix to identify them as binary, rather than decimal numbers
- "h" postfix to identify them as hexadecimal, rather than decimal numbers

Binary Numbers

- In base-10 arithmetic, numbers represented as the sum of multiples of each power of 10, so the number $1543 = (1 \times 103) + (5 \times 102) + (4 \times 101)$ + (3×100)
- Positive integers are represented using a placevalue binary (base-2) system— similar to the place-value system used in decimal (base-10) arithmetic

Binary, hexadecimal and decimal representation examples

- $00100111_b = (0 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 39$
- $27_{\rm h} = (2 \times 16^1) + (7 \times 16^0) = 39_{\rm d}$

Convention Prefix 0b and 0x

- "0b" to identify them as binary, rather than decimal numbers
- "0x" to identify them as hexadecimal, rather than decimal numbers

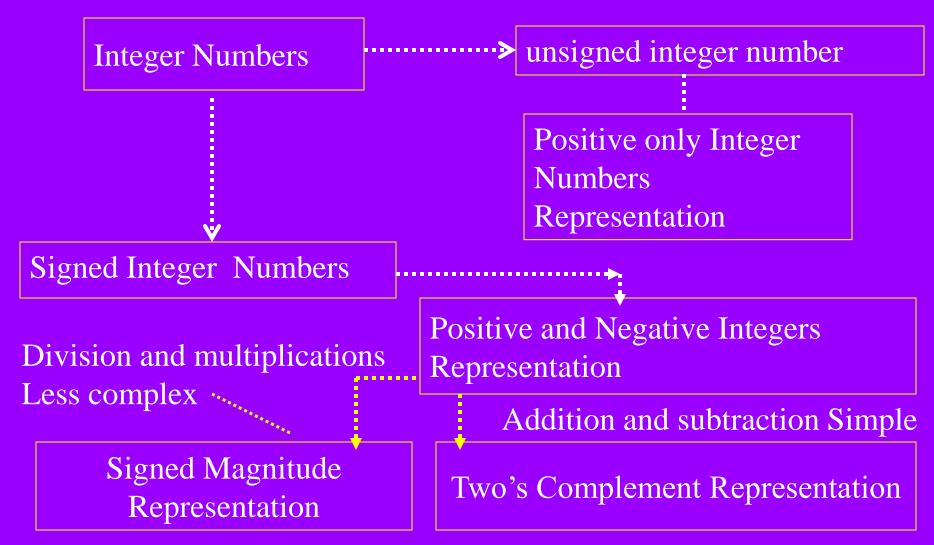
Decimal, Binary and Hex numbers

- 0 $0b0000 \text{ or } 0000_b 0x0 \text{ or } 0_h$
- 4 $0b0100 \text{ or } 0100_{b}$ $0x4 \text{ or } 4_{h}$
- 9 $0b1001 \text{ or } 1001_b$ $0x9 \text{ or } 9_h$
- 13 $0b1101 \text{ or } 1101_b \text{ 0xD or } D_h$
- 15 $0b1111 \text{ or } 1111_b$ $0xF \text{ or } F_h$

Hexadecimal Notations

Decimal Number	Binary Representations	Hexadecimal Representation
0	0b0000	0x0
1	0b0001	0x1
2	0b0010	0x2
3	0b0011	0x3
4	0b0100	0x4
5	0b0101	0x5
6	0b0110	0x6
7	0b0111	0x7
8	0b1000	0x8
9	0b1001	0x9
10	0b1010	0xA
11	0b1011	0xB
12	0b1100	0xC
13	0b1101	0xD
14	0b1110	0xE
15	0b1111	0xF

Integer Number Representations



Positive Only Integers (unsigned integers)

Positive Only Integers (unsigned integers)

- Positive integers represented using a place-value binary (base-2) system with msb also having a place value
- $0b00100111 = (0 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 39$
- msb 0 is also having a places value
- $0b00100111 = (1 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 128_d + 39_d = 167_d$

Positive Only Integers (8-bit unsigned integers)

- $0b11100111 = (1 \times 2^7) + (1 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 231$
- 8 bit unsigned number can be between 0 and 255—0 and 2⁸⁻¹

Positive Only Integers (16-bit unsigned integers)

- $0b100000011100111 = (1 \times 2^{15}) + (1 \times 2^{7}) + (1 \times 2^{6}) + (1 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) = 32999$
- 16 bit unsigned number can be between 0 and 65535—0 and 2^{16–1}

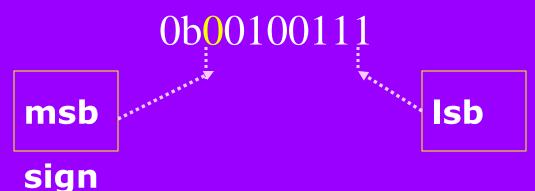
Positive Only Integers (32 bit- unsigned integers)

- $0x10000000 = (1 \times 16^7) + (0 \times 16^6) + (0 \times 16^5) + (0 \times 16^4) + (0 \times 16^3) + (0 \times 16^2) + (0 \times 16^1) + (0 \times 16^0) = 268435456$
- 32 bit unsigned number can be between 0 and 4294967295, (0 and 2^{32-1} or 0 and $16^7 1$)

Representing of Positive and negative Numbers (Signed Numbers)

Representing of Positive and negative Numbers (Signed Numbers)

• Sign-magnitude representation uses msb (maximum significant bit) = 0 for the +ve number and 1 for -ve number)



Sign magnitude integer number

- Positive integers represented using a place-value binary (base-2) system with msb do not have a place value
- $0b00100111 = + [(0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)] = 39$

Sign magnitude integer number

- Positive integers represented using a place-value binary (base-2) system with msb do not have a place value
- msb = 1—ve number
- = 0 + ve number
- $0b10100111 = -(0 \times 2^{6}) + (1 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) = -39$

Sign magnitude integer number

- $0b11100111 = -[(1 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)] = -103$
- 8 bit signed number in signed value representation can be between + 0 and + 127 and 0 and 127
- + 0 and 0 is same- 0b1000000 and 0b0000000 same

Sign magnitude integer number (16-bit signed integer)

- 0b100000011100111 = -231 =
- 16 bit signed number can be between + 0 and + 32767 and 0 and 32767

Sign magnitude representation Integers (32 bit- signed integers)

- $0x8000000A = -(0 \times 16^{6}) + (0 \times 16^{5}) + (0 \times 16^{4}) + (0 \times 16^{3}) + (0 \times 16^{2}) + (0 \times 16^{1}) + (10 \times 16^{0}) = -10$
- 32 bit signed number can be between +0 and +268435455 and

-0 and - 268435455

Two's complement Representation

Two's Complement Negation

Original value: 0b00001100 (12) Negate each bit: 0b11110011 (Two's-complement Add 1: 0b11110100 representation of-12)

Two's complement representation for integer number

- Positive integers represented using a place-value binary (base-2) system with msb do not have a place value
- $0b00100111 = + [(0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)] = + 39$

Two's complement Number as Signed Number

- Two's complement representation gives msb (maximum significant bit) = 0 for +ve number and 1 for -ve number)
- **But** if msb = 1, then number is negative and value is as per its two's complement

Two;s complement integer number

- Negative integers represented using a placevalue binary (base-2) system with msb don't have a place value and – ve number is found when msb = 1 from two's complement
- 0b11111100 = [Two's complement of 11111100] = -4

Examples in Two's complement representation

- 0000 0000_b
- 0000 0001_b
- 0000 1100_b
- 0100 0001_b
- 0111 1110_b

• 0111 1111_b

 0_{d} + 1_{d} + 12_{d} + 65_{d} + 126_{d} + 127_{d}

Examples in Two's complement representation

- 1111 1111_b
- 1111 1110_b
- 1111 1100_b
- 1000 0000_b

 -2_{d} -4_{d} -128_{d}

 -1_d

Two's complement integer number

- 8 bit two's complement integer number can be between 0 and + 127 and - 1 and - 128
- 0b1000000 and 0b0000000 not same in two's complement representation

Two's complement integer number (16-bit signed integer)

- 0b111111111111000 = -8
- 16 bit signed number can be between + 32767 and - 32768

Steps in finding Two's complement representation

- If msb = 0, then remaining bits give a +ve value
- If msb = 1, then all bits represent a -ve number with values found from 2's complement as follows:

- 0b 1111 1111 ---- 0000 0000 (Finds 1's complement by inversion)
- 0000 000 1 (Increment by 1)
- Number is Negative and is -1

- 0b 1000 0011 ---- 0111 1100 (Finds 1's complement by inversion)
- 0111 1101 (Increment by 1)
- Negative Number –125

• 0b 1000 0000 →
 0111 1111 (Finds 1's complement by inversion)
 1000 0000 (Increment by 1)
 Negative Number is -128.

Ob 1000 1000 0111 0111 (Finds 1's complement by inversion) 0111 1000 (Increment by 1) Number is -120.

Two's complement of a +ve number gives -ve number

- 0b 0000 0101+ve Number = + 5 as msb = 0
- 1111 1010 (Finds 1's complement by inversion)
- 1111 1011 (Increment by 1)
- Negative Number –5 represented as 1111 1011

Two's complement Two times gives same number back

- Negation twice gives same
- Number 0b 0000 0101 (+5) Two's complement = 1111 1011 (-5)
- Number 0b 1111 1011 Two's complement = 0000 0101 (+5)

Two's complement representation Integers (32 bit- signed integers)

- $0 \times 6000000 \text{A} = (6 \times 16^7) + (0 \times 16^6) + (0 \times 16^5) + (0 \times 16^4) + (0 \times 16^3) + (0 \times 16^2) + (0 \times 16^1) + (10 \times 16^0) = (6 \times 16^7) + 10 = +268435466$ because msb = 0_b
- 32 bit signed number can be between $+2013265919_{d}$ and -2013265920_{d}

Two's complement representation Integers (32 bit- signed integers)

- 0xFFFFFA = 0b1111 1111 1111 1111 1111
 1111 1111 1010. One's complement = 0b0000
 0000 0000 0000 0000 0000 0101. Two's
 complement = 0b0000 0000 0000 0000 0000
 0000 0101 + 0b1 = 0x0000006 = -10
- 32 bit signed number can be between $+2013265919_{d}$ and -2013265920_{d}

Summary

We learnt

- Understand the representations for unsigned and signed integers
- Decimal, Binary and Hexadecimal Numbers
- Unsigned n-bit number is between 0 and $+2^n$ -1 for an n-bit representation
- Signed n-bit number in sign-magnitude representation is between 0 and $+(2^{n-1}-1)$ and 0 and $-(2^{n-1}-1)$

We learnt

- Signed n-bit number in two's complement is between + (2ⁿ⁻¹ - 1) and - (2ⁿ⁻¹)
- Two's complement is equivalent to negation of a number
- Two's complement is found by first finding 1's complement (inversion) of all bits and then incrementing that by 1

End of Lesson 01 on Representations of Positive and Negative Integers