Chapter 01: Introduction

Lesson 01
Evolution Computers Part 1: Mechanical Systems, Babbage method of Finite Difference Engine and Turing Hypothesis

Objective

- Understand how mechanical computation systems evolved
- Babbage Difference Engine
- Turing Hypothesis

Mechanical Systems

- 16th Century
- Gears, Handles and levers based systems
- Based on Concept pioneered by Pascal
- Addition of decimal numbers
- Subtraction of decimal numbers
- Carry to Left Concept

Mechanical Systems

- Based on concept pioneered by LeibnizAdded, subtracted, multiplied, and divided decimal numbers

Gear Box and Carry left concept

- 100 teeth $/ 360^{\circ}$ with a decimal number mark (0 , $1, \ldots 9)$ at each 3.6° at each tooth
- 10 teeth $/ 360^{\circ}$ with a decimal number mark (0,1 , ...9) at each 36° at each tooth
- When first rotates by 10 teeth (3.6° each) the second rotates by 1 tooth (36°)
- Each tooth has a decimal number mark number at 36°

Mechanical system based on Gear Box

- The rotation either clockwise or anticlockwise and a gear ratio of 10
- Allows the mechanical system to either carry to left during a decimal addition
- Borrow from left during subtraction

Babbage's

Multi-step Programmable Computer

- Concept pioneered by Babbage
- 19th Century (Difference Engine)
- Multiple steps of adding to arrive at a result
- Application-A machine generated and printed tables of equally spaced numbers by a method of finite differences
- Easy to implement with mechanical gears and levers

Method of finite Difference

- Finding table in which each number $\mathrm{x}=\mathrm{i} \times \mathrm{x}_{0} ; \mathrm{i}$ = $1,2, \ldots$
- Difference between each number is finite and difference $\Delta=\mathrm{i}$. $\mathrm{x}_{0}-(\mathrm{i}-1) . \mathrm{x}_{0}=\mathrm{x}_{0}$ when $\mathrm{i}=1$, 2, 3, ...
- Store initial value x_{0} in first register
- Store difference x_{0} in second register

Method of finite Difference

- Step 1: Add first with second. Answer in first register $=\mathrm{x}+\Delta$
- Repeat Step 1: Add first with second Answer $=x$ $+2 \Delta$
- Repeat Step 1: Answer $=x+3 \Delta$
- Repeat Step 1: Answer $=x+4 \Delta$
- Repeat Step 1: Answer $=x+5 \Delta$
Cycles with one
step

Initial	Initial	Initial	Initial
Value	Value	Value	Value

step
First
Register

Second
 Register

Finite Difference

Method of finite Difference

- Finding table in which each number $=\mathrm{n}_{0}+\mathrm{i} \times \mathrm{n}$; $\mathrm{i}=1,2, \ldots$
- Difference between each number is finite and difference $\Delta=\mathrm{i} . \mathrm{n}-(\mathrm{i}-1) . \mathrm{n}=\mathrm{n}$ when $\mathrm{i}=1,2$, 3, ...
- Store initial value n_{0} in first register
- Store difference n in second register

Method of finite Difference

- Step 1: Add first with second. Answer in first register $=\mathrm{n}_{0}+\mathrm{n}$
- Repeat Step 1: Add first with second Answer = $\mathrm{n}_{0}+2 \mathrm{n}$
- Repeat Step 1: Answer $=n_{0}+3 n$
- Repeat Step 1: Answer $=n_{0}+4 n$
- Repeat Step 1: Answer $=\mathrm{n}_{0}+5 \mathrm{n}$

Cycles

$1 \mathbf{1}^{\text {st }}$	$2^{\text {nd }}$	$1^{\text {st }}$	$2^{\text {nd }}$
Initial	Initial	Initial	Initial
Value	Value	Value	Value

Method of finite Difference

- Finding table in which each number $=\mathrm{i}^{2} ; \mathrm{i}=1$, 2, \ldots
- Differentiate i^{2} with respect to i. $\partial\left(\mathrm{i}^{2}\right) / \partial \mathrm{i}$ Answer is 2. i
- Differentiate 2 i with respect to $\mathrm{i} . \partial(2 \mathrm{i} / \partial \mathrm{i}$ Answer is 2
- Difference between third and second registers is finite and difference $\Delta_{23}=2$. $\mathrm{i}-2$. $(\mathrm{i}-1)=2$ in each successive step when $\mathrm{i}=1,2,3, \ldots$

Method of finite Difference

- Hence Store finite difference $\Delta_{23}=2$ in third register
- Difference between first and second registers is finite and difference $\Delta_{12}=\mathrm{i}^{2}-(\mathrm{i}-1)^{2}=\mathrm{i}^{2}-\left(\mathrm{i}^{2}-\right.$ $2 \mathrm{i}+1)=2 \mathrm{i}-1$ in each successive step when $\mathrm{i}=$ $1,2,3, \ldots$
- Store initial value $\mathrm{R} 1=0$ in first register
- Store initial difference value $\Delta_{12}=2 \times 1-1=1$ in second register for $\mathrm{i}=1$

Method of finite Difference

- Step 1: Add third with second. Answer in second register $=\Delta_{23}+\Delta_{12}=2+1=3$
- Step 2: Add second with first Answer in first register $=0+\Delta_{12}=0+1=1=1^{2}$
- Repeat Steps 1 and 2 : Add second with first Answer in first register $=\Delta_{23}+\Delta_{12}+1^{2}=2+1$ $+1=4=2^{2}$
- Repeat Steps 1 and 2: Answer in first register = $2+3+4=9=3^{2}$

Method of finite Difference

- Repeat Steps 1 and 2: Answer in first register $=$ $2+5+9=4^{2}$
- Repeat Steps 1 and 2: Answer in first register $=$ $2+7+16=5^{2}$
- Repeat Steps 1 and 2: Answer in first register $=$ $2+9+25=6^{2}$

Cycles

$1^{\text {st }} \quad 2^{\text {nd }} \quad 1^{\text {st }} \quad 2^{\text {nd }}$
with two

Initial

Value

Initial
Value
steps

Initial Initial
Value Value

R1

R2 | 1 | 3 | 5 |
| :---: | :---: | :---: |
| | Finite Differences | |

R3
Finite Differences
R3

Finite Differences

Method of finite Difference

- Finding table in which each number $=i^{3} ; i=1$, 2, ...
- Differentiate i^{3} with respect to i. $\partial\left(i^{3}\right) / \partial \mathrm{i}$ Answer is $3 . \mathrm{i}^{2}$
- Differentiate $3 . \dot{i}^{2}$ with respect to i. $\partial\left(3 . \dot{i}^{2}\right) / \partial \mathrm{i}$ Answer is 6 i
- Differentiate 6 i with respect to i. $\partial(6 \mathrm{i}) / \partial \mathrm{i}$ Answer $=6$

Method of finite Difference

- Difference between fourth and third registers is finite and difference $\Delta_{34}=6 . i-6 .(i-1)=6$ in each successive step when $i=1,2,3, \ldots$
- Difference between third and second registers is finite and difference $\Delta_{12}=6$. $(\mathrm{i})^{2}-6 .(\mathrm{i}-1)^{2}=$ $6 . i^{2}-6 .\left(i^{2}-2 i+1\right)=6 i-6$ in each successive step when $\mathrm{i}=1,2,3, \ldots$

Cycles

$1^{\text {st }} \quad 2^{\text {nd }} \quad 1^{\text {st }} \quad 2^{\text {nd }}$ with three

Initial

Value
Value Value steps

R1

R2
Finite Differences
0
Finite Differences
R3

6	12

Finite Differences

Turing's Hypothesis

- Alan Turing (1937)

- Every computation can be performed by some Turing machine
- Turing Machine that adds
- $\quad \mathrm{T}_{\text {add }}(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{b}$
- Turing Machine that multiplies
- $\mathrm{T}_{\text {mul }}(\mathrm{a}, \mathrm{b})=\mathrm{a} \times \mathrm{b}$

What is a Turing Machine?

- A mathematical model of a device that can perform any computation
- Which Writes/Reads symbols on an infinite "tape"
- Performs state transitions, based on current state and symbol

What is universal Turing machine?

- A Turing machine that could implement all other Turing machines
- Which takes in inputs the data, plus a description of computation

Universal Turing Machine

- Programmable - Instructions are part of the input data
- A Universal Turing Machine can emulate a computer
- A computer can emulate a Universal Turing Machine

Universal Turing Machine

- Do any computations
- Therefore, a computer is also a universal computing device

A Universal Computing Device

- All computers, given enough memory and time are capable of computing exactly the same things

Summary

We learnt

- Mechanical Systems - 16th Century Gears, Handles, and lever based systems
Concept pioneered by Babbage
Multiple steps of Addition to arrive at the result
- Every computation can be performed by some Turing machine.
- A universal Turing machine can perform any computation provided given enough memory and time

End of Lesson 01
 Evolution Computers Part 1: Mechanical Systems, Babbage method of Finite Difference Engine and Turing Hypothesis

