Lesson 5 TCP/IP suite, TCP and UDP Protocols

TCP/IP Suite: Application layer protocols

- TCP/IP Suite set of protocols with layers for the Internet
- TCP/IP communication 5 layers: L7, L4, L3, L2 and L1
- OSI L6 and L5 included in suite used layers L7 and L5
- Each Application layer L7 protocol assigned a Port and a number by IANA

Fig. 4.6 IoT TCP/IP Suite of Protocols for Internet

TCP/IP Suite: Application layer protocols

- Examples for TCP stream communication:
- HTTPS, HTTP, MQTT, XMPP, SOAP, FTP, TFTP, Telnet, PoP3, SMTP, SSL/TLS and others

TCP/IP Suite: Application layers protocols

- Examples for the datagram communication using UDP:
- DNS, TFTP, Bootpc, Bootps, SNMP, DHCP, CoAP, LWM2M and others.
- Application layer security protocols: TLS and DTLS

TCP/IP Suite: Transport layer protocols

- Example 1
- TCP for the acknowledged data flow using connection oriented protocol
- Example 2: UDP for datagram for the unacknowledged data flow using connectionless protocol
- Other Examples: RSVP, DCCP and other protocols.

TCP/IP Suite: internet layer protocols

- Network layer called internet layer
- Example: IPv4
- IPv6
- RPL
- ICMP
- ICMPv6, IPSec and Others

TCP/IP Suite: Data Link layer protocols

- Examples
- PPP/ARP/RARP/NDP, MAC or other
- MAC protocol for Ethernet LAN or DSL or ISDN or other.

TCP at Transport Layer

- For acknowledged data flow when a segment transmits
- TCP protocol segment consists of the data which the transport layer receives on transfer from Application layer for transmission to the receiver end

TCP Connection oriented Feature

- Connection first establishes using a connection establishment procedure adopted when first time transmitting a TCP data stack
- Connection closes using a connection closing procedure adopted when last sequence completes transmission of TCP

TCP Protocol data unit

- PDU _{TCP} the maximum data unit = 2^{32} B which can transmit or receive at the layer when using TCP stream
- Protocol data unit, PDU $_{TCP} = 1$ Segment and 1 segment maximum value = 2^{32} B.

11

TCP Data Stack Header

- *n* words
- N = 5 and extendable using option words and padding words
- Data stack to next layer or data packet to router has maximum V = (n + len) words where $V \le (2^{14} n)$.

		م ۲
31 16	15 0	
Destination Port No.	Source Port number	
63	31	
FirstByte Sequence Number in the stream		
95	64	
Next expected sequence no. in the ACK		F
127 112	111 96	
w [TCP Byte stream size, len	Flags (6-bit), Reserved (6 bit)	
+ <i>n</i>) words]	plus data Offset (4-bit)	
159 144	143 128	
<i>urgent</i> [Data End Pointer]	Check sum	
(Location of Byte Stream)]		
<i>q</i> 160		İ İ /
Option header words and fields plus the words as		
padding before the data		
$\frac{1}{2}$		
Data of law swands		
Data of len words		
$v = (n + len) \times 32 - 1$		

Transport layer for data stack from or to Application layer Header Extended Header $q = (32 \times n - 1),$ [*n* is number of words = 5 words for header plus options plus padding words

Fig. 4.7 Data stack received or transmitted at or to transport layer stream consisting of TCP header field 160 bits and extended header (n - 5) words when required plus data stack of *len* words from or for the Application layer -13

TCP Header Word Fields

- First: Upper 16 bits for the source port number and lower 16 bits are for destination port number
- Second: Stream First Byte Sequence Number

TCP Header Word Fields

- Third: Next expected sequence number sent bytes from the receiver in the Acknowledgement
- Fourth: 16-bit w [TCP Byte stream size, len + n) words] and Flags (6-bit), Reserved (6 bit) plus data Offset (4-bit)

TCP Header Word Fields

- Fifth: 16-bit *urgent* [Data End Pointer (Location of data stack last word)]
- 16-bit Check sum of the header n words to enable error detection at receiver in the header words
- Option header words and fields plus the words as padding before the data

TCP Features

- Full duplex acknowledged data flow from transport layer at one end (End 1) to transport layer of other end (End 2)
- Each TCP layer data stack reaches destination almost each time

TCP Features

- Retransmission from the next of last acknowledged sequence number to another sequence number
- One TCP connection communicates in one direction at an instance.
- segment stack

TCP Features

- Acknowledged flow means that the request as well as response messages communicate in unicast mode
- End 2 sends acknowledgement message and the header field of that conveys expected sequence number from transmitter by the receiver End 2.

UDP

- A half duplex unacknowledged data flow from transport layer at one end (End 1) to transport layer of other end (End 2)
- Datagram = Maximum 2^{16} B
- Each UDP layer data stack may or may not reach destination due unacknowledged flow

UDP Datagram

- One UDP datagram communicates in one direction at an instance between two ends
- PDU _{UDP} the maximum data unit = 2^{16} B which can transmit or receive at the layer when using UDP datagram

Fig. 4.8 Transport Layer UDP Header field with data stack from the Application layer and Pseudo header of 2 words (64 bits) for source and destination IP addresses

UDP Connectionless Unacknowledged Datagram Protocol

- Connectionless: No connection establishment procedure adopted when first time transmitting a UDP data stack
- No connection closure procedure adopted
- Permits multicasting, means to multiple destinations

23

UDP Protocol Data Unit

- Protocol data unit, PDU $_{UDP} = 1$ Datagram and 1 datagram maximum value = 2^{16} B.
- Data stack to network layer has maximum *m* words where $m \le (2^{14} 2)$

UDP Header Two Words

- First word fields: upper 16 bits source port number and lower 16 bits destination port number
- Second word fields: upper 16 bits length, and lower 16 bits checksum.

UDP Header Second Word Fields

- Upper 16 bits for datagram length
- Lower 16 bits for UDP header's checksum

Summary

We learnt

- TCP/IP suite of protocols for Internet
- TCP and UDP protocols
- Connection Oriented protocol
- Datagram
- Connectionless

End of Lesson 5 on TCP/IP suite, TCP and UDP Protocols