Lesson 3

Text Classification Using KNN and Naïve Bayes Classifier Supervised Machine Learning

Supervised Learning Method

- Supervised learning Algorithm exploits the training data (where zero or more categories) to model a classifier
- Classifies new text documents and labels each document
- Classification results from labeled documents and additional knowledge from experts

Classification

- Using Categories to which Document Labels
- Considered as a positive example for all categories with which it is labeled
- Negative example to all others

Training Algorithm Task

• Find a weight vector which best classifies new text documents

Different approaches for Supervised Learning

- (i) K-Nearest Neighbour Method
- (ii) Support Vector Machine
- (iii) Naïve Bayes Method
- (iv) Decision Tree
- (v) Decision Rule

K-Nearest Neighbour Method

- Assumes that close-by objects are more probable in the same category
- Finds k objects in the large number of text documents, which have most similar query responses

K-Nearest Neighbour Method

- Predictions are based on a method to predict new (not observed earlier) text data
- Predictions by (i) majority vote method (for classification tasks) and (ii) averaging (for regression) method over a set of K-nearest examples

Naïve-Bayes Classifier

- Parallel algorithm
- Widely preferred text analytics
- Medium to Large Datasets 1 M to 100
 M training examples which take too
 long time on SGD (Sequential, online
 incremental execution) or SVM
 (Sequential execution)
- Uses Posteriori Probability

Meaning of posteriori

- Posteriori means relating to or involving inductive reasoning from particular facts or effects to a general principle
- Posteriori example— Combined conditional probability relates to individual condition probability using inductive reasoning

Meaning of posterior probability in statistics

 The probability assigned to some parameter or to an event on the basis of its observed frequency in a sample, and calculated from a prior probability by Bayes theorem

Bayes Classification Assumption

- Naïve independence assumptions (conditional independence)
- The classifier computes condition probabilities for the conditional independence

Naïve Bayes Classifier

- Naïve means unsophisticated, ..., a simple classifier
- Probabilistic and statistical classifier
- Based on Bayes theorem (from Bayesian statistics) with assumption of strong (Naïve) independence and maximum posteriori (MAP) hypothesis

Naïve Bayes Classifier

- A supervised learning technique, which uses non-parametric approach
- Uses assumption that features have strong independences
- "maximum a posteriori (MAP)" used to obtain the most likely class (Posteriori means at the back of something, for example, hypothesis)

Document classification in Text Analytics

- Use the bag-of-words model
- The pre-processing of a document first provides a document with a bag of words
- The occurrence (frequency) of each word as a feature used for training a classifier [Refer Section 9.2.2 Example 9.3]

Bayes Classification

 Probability that a bag-of-words x belong to kth class equals the product of individual probabilities of those words.

P $(\mathbf{x}|\mathbf{c}_k) = \prod_{i=1}^n P(\mathbf{x}_i|\mathbf{c}_k)$, where \mathbf{x}_i is a discrete random variable (word), i = 1, 2, ..., n, when n is number of words in the bag.

Meaning of Symbols

• Π is sign for the product of n terms. P(xi|ck) means probability of condition that state the value = x_i and of $c = c_k$

Naïve Bayes Analysis

• Example 9.3 for "maximum a posteriori (MAP)" used to obtain the most likely class and take a decision

Naïve Bayes Classifier

- Requires a small amount of training data to estimate the parameters
- Not sensitive to irrelevant features as well

Naïve Bayes Classifier Applications

- Document categorization
- Language detection
- Authorship identification, age/gender identification
- Sentiment detection
- Email spam detection
- Personal email sorting

Summary

We learnt:

- Training data used to learn by a classifier, which classifies new text documents and labels each document
- KNN method—close-by objects are more probable in the same category,
 Finds k objects in the large number of text documents, which have most similar query responses

Summary

We learnt:

- Naïve Bayes Classifier
- Use the concept that probability that a bag-of-words x belong to kth class equals the product of individual probabilities of those words

End of Lesson 3 on Text Classification Using KNN and Naïve Bayes Classifier Supervised Machine Learning