

Graph Models

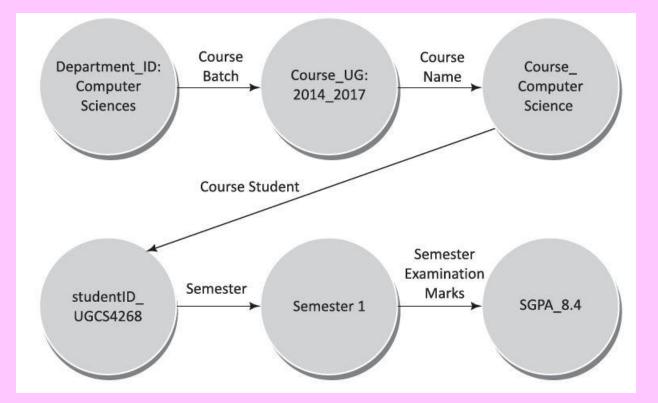
"Big Data Analytics ", Ch.08 L02: Graph Analytics...SparkGraphX Platform, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

1

2019

Graph

- Defines by a set of vertices (nodes) 0 and edges (links) & define a graph 9
- $\mathcal{G} = (\mathcal{O}, \mathcal{E})$
- Graph G is a set, which contains two sub-sets 𝔅 and 𝔅.


Elements of Vertices ϑ

- \Im represents the entities
- A node or a vertex v in ^o represents an entity, such as studentID [Example two nodes: 'studentID' and 'studentSem1SGPA'.]

Set of Edges &

- Represents the relations or associations
- An edge e connects the two nodes
- e represents a relation or association between the two entities
- An example of association is 'studies at'.
- When entities are studentID and UG course at two interconnected nodes.

Figure 8.1 Graph model of a grade sheet

Distribution Function

• Represents the variation in degrees of the nodes on traversing from first to second, to third, to fourth, ...

A Label in graph model

- (i) A label near a vertex can specify identification for the entity. For example, *studentID*.
- (ii) A label near an edge can specify the context of relation or association or value. For example, "studies at" or "CS_Examination" or the grade point average in Semester 1, *Sem1SGPA*.

A weight in graph model

(iii) A weight near the edge can specify the weight of a relationship with respect to other edges of the same kind.

Multiple Relations in a graph model (iv) Multiple relationships can associate a pair of vertices interconnected by multiple edges.

Direction in A graph model

 (v) Multiple relationships can associate a pair of vertices interconnected by multiple edges

Database as Graph

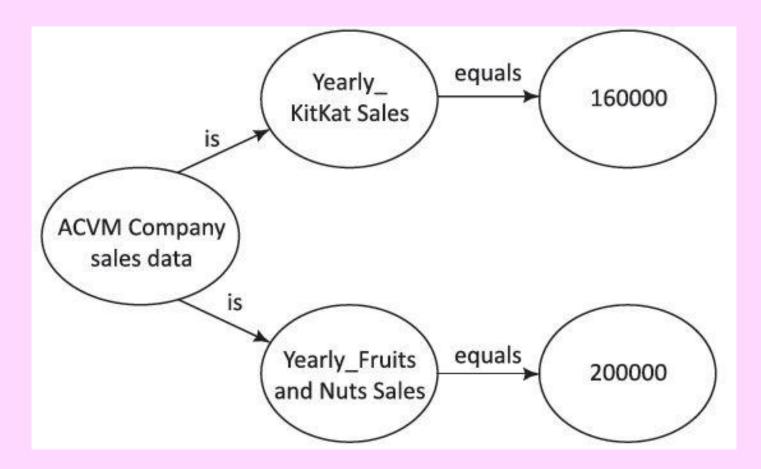
1. Graph models a database using graph parameters or properties assigned to each vertex, v and edge, e and hierarchical relations

Graph Database

 Graph database explicitly stores the relationships at each edge using hierarchy graph

Hierarchy in Graph

- A hierarchy graph explicitly stores hierarchal relationships
- Hierarchy relations between the tables, such as database tables do not store but implicit in the codes for a search or query.


Representing a Graph as Triples

 Triple means a data entity consisting of three-components: subject, predicate and object. For example, consider a sentence, 'Spark includes GraphX'. Here, Spark is the subject, includes is the predicate and GraphX is the object.

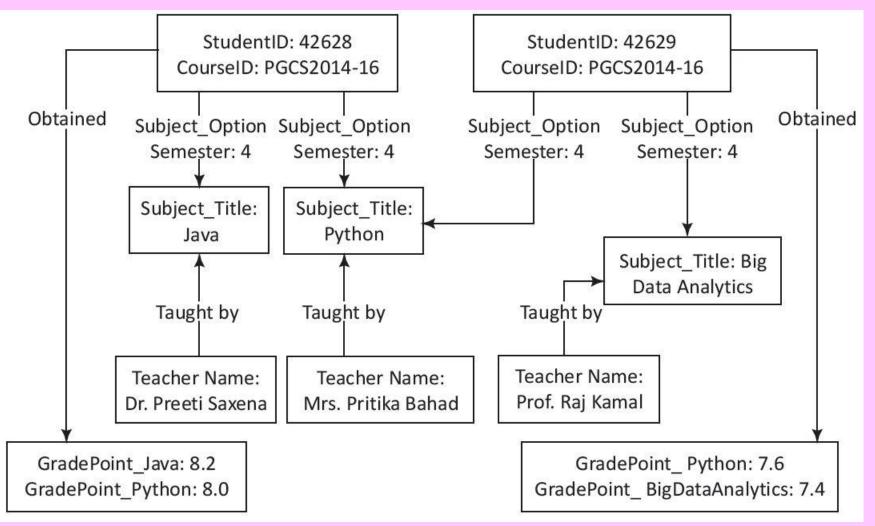
Triples as the Graph entities

- A triple in a directed graph is a sentence-like format
- A sentence three elements: 'subject' 'predicate' and 'object'
- Similarly, a triple consists of three elements: source node, connecting edge, and destination node

Figure 8.2 Example of a graph model of yearly total sales of an ACVM company

Triple Format

- Format is instance identifier-property name-property value
- Example, StudentID: 42629
 obtained: "GradePoint_Java "8.2".
 StudentID: 42629 is the instance
 identifier. Obtained is the property
 name.


Triple Format

- Value of Property GradePoint_Java is 8.2.
- Graph model represents instance identifier and property value at two nodes and property name as the edge connecting them.

Property Graph Model

- A property graph assigns property to the nodes and edges.
- Property graph model (Figure 8.4) clearly shows the relationships and associations as compared to RDBMS tables (Figure 8.5)

Figure 8.4 Property graph of students, semester, subject options, grades, and teachers

Property Graph Modeling a database

- Figure 8.5 RDBMS tables for students, semester, subject options, grades and teachers
- Property graph model represents the relationships or associations pictorially and are thus easy to interpret

Figure 8.5 RDBMS tables for students, semester, subject options, grades and teachers

		-								
Student ID	Semester		Subject		Teacher		Grade Point			
40628	4		Java		Dr. Preeti Saxena		8.2			
40628	4		Python		Mrs. Pritika Bahad		8.0			
40629	4		Python		Mrs. Pritika Bahad		7.6			
40629	4		Big Data Analytics		Prof. Raj Kamal		7.4			
			•••		<u> </u>					
200	2012		2222		211					
1	1		1							22
		14. 	1		StudentID	s	Semester	Sul	ojectID	Grade Point
StudentID	(Course	ID		40628		4	C	S-401	8.2
40628	PGCS 201		4-16		40629		4	CS-402		7.6
40629	PGCS 201		4-16			8				
•••					4111		2	CS-301		
4111	PGCS 201		5-17							
					4212		5	CS-502		•••
4212	PGCS 2016-18						•			
^					SubjectID		Subject		Teacher	
Course ID		Semester			CS-401		Java		Dr. Preeti Saxena	
PGCS 2014-16		5 1		CS-402		Python		Mrs. Pritika Bahad		
PGCS 2014-16					CS-403	Big	g Data Analytics		Prof. Raj Kamal	
PGCS 2014-16		3			CS-301		DBMS			
PGCS 2014-16		4			CS-501	CI	oud Computing			
					CS-502	CI	oud compt	ung		•••

We learnt:

- \Im represents the entities and \Im represents the relations or associations
- Labels at nodes and edges
- Graph model databases
- Property graph model represents the relationships or associations

Summary

We learnt:

- Triples as the Graph entities
- Format of Triple
- instance identifier
- property name
- property value

End of Lesson 2 on Graph Models

2019