Lesson 17

Mahout

Mahout

- Fast and Efficient Processing of Big Data
- Processes very large datasets at the cluster of machines with high efficiency for above 10 M data points in sharednothing environment.
- Big Data analysis: datasets with over 1 million data points

Mahout

- Can run on multiple machines as well as multi-core processing units
- Compute tasks fast when distributed over the cloud, tasks runs parallel, and run in shared nothing-computational environment of multiple machines and multi-core units

Mahout in sequential shared environment

• Higher time efficiency for less than 1 M data points.

Mahout Eclipse and Maven Installing

- Download Maven and Eclipse https://www.eclipse.org/downloads/Add -Name: m2eclipse-Location: http://download.eclipse.org/technology/m2e/rele ases (Google "install m2eclipse")
- Ubuntu: sudo apt-get install git sudo apt-get install maven

Mahout Installing

- http://mahout.apache.org/general/ downloads.html
 Latest Release: 0.13.0 - mahoutdistribution-0.13.tar.gz
- Apache Preparing for Mahout version
 0.14.0 (June 2018)

Git Hub

- GitHub: Mahout Mirror https://github.com/apache/mahout
- git://git.apache.org/mahout.git mahouttrunk

Git Hub Maven under mahout-trunk folder:

- <dependency>
- <groupId>org.apache.mahout</groupId>
- <artifactId>mahout-core</artifactId>
- <version>\${mahout.version}</version>
- </dependency>

Mahout Environment Setting

- export
 MAHOUT_HOME=/path/to/mahout
- export MAHOUT_LOCAL=true # for running standalone on your dev machine,
- # unset MAHOUT_LOCAL for running on a cluster

Feature in Mahout 0.13.0 (2017)

- Enables easier implementations of most modern machine learning and deep learning algorithms
- Open-source distributed scalable linear algebra library ViennaCL, the Java wrapper library interface JavaCPP

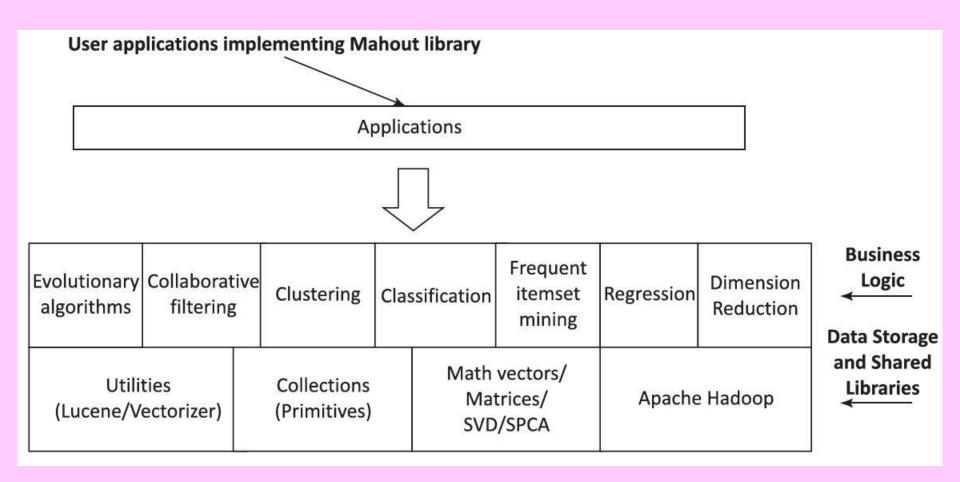
Feature in Mahout 0.13.0 (2017)

- The graphics processor manufacturer, NVIDIA CUDA bindings directly into Mahout
- Easier to run matrix mathematics on graphics cards (used in computers for fast graphic computations)

Java Implementations

 Java libraries for common mathematics and statistical operations (focused on linear algebra) and primitive Java Collection Interfaces

Figure 6.21 Mahout architecture



Features of Mahout

- Designed on top of Apache Hadoop
- Supports algebraic platforms like fast computing Apache Spark paradigm and MapReduce

Features of Mahout

- A scalable generalized tensor and linear algebra solving engine, designed on top of Apache Hadoop.
- Supports algebraic platforms like fast computing Apache Spark paradigm and MapReduce
- Distributed row matrix (DRM), scalable libraries for matrix and vectors

Random Access Feature

 Random access means accessing vectors using key, index or hash followed by values, in any order

Clustering Implementations

- Contains several Spark and MapReduce enabled, such as k-means, fuzzy k-means, Canopy, Dirichlet and mean shift, Latent Dirichlet Allocation,
- Spectral Clustering, MultiHash Clustering
- Hierarchical clustering

Classification Implementations

- Single Machine Sequential: Stochastic Gradient Descent (SGD), Logistic Regression trained via SGD, Hidden Markov, Multi-layer Perceptron
- Parallel Distributed (Map Reduce):
- Naïve Bayes, complementary Naïve Bayes and Random Forest

Collaborative Filtering

- Enables making automatic predictions about items and item sets of interests
- Similar item-sets mining

SVD++ and SGD

- Weighted matrix factorization SVD++, and parallel SGD (in sequentially in shared-data environment)
- SGD [an iterative learning algorithm in which each training example is used to pull the model M program slightly to reach more closer to correct answer]

Recommender Implementation

- Collaborative filtering based recommender,
- SVD recommender
- KNN-item-based recommender (linear interpolation item based recommender)
- Cluster-based recommender

Implementation APIs

- APIs for distributed and in-core first and second moment routines
- Distributed and local principal component analysis (DSPCA and SPCA) and stochastic singular value decomposition (DSSVD and SSVD), singular value decomposition (SVD),

Implementation APIs

- Distributed Cholesky QR (thinQR)
- Distributed regularized Alternating Least Squares (DALS)
- Matrix factorization with alternating least squares

Principal Component Analysis (PCA)

- Means a linear transformation method
- Finds the directions of maximum variance in high-dimensional data
- Projects those data for transformation onto a smaller dimensional subspace while retaining most of the information

Principal Component Analysis (PCA)

- Identifies patterns in data sets
- Detect the correlation among the variables
- Strong correlation: Try for reducing the dimensionality

PCA Applications

• PCA applies in a number of use cases, such as stock market predictions, and the analysis of gene expression data.

Summary

We learnt:

- Mahout for Fast and Efficient Processing of Big Data
- A scalable generalized tensor and linear algebra solving engine, designed on top of Apache Hadoop.
- Mahout implementations of Machine Learning Algorithms

Summary

We learnt:

- Mahout for Similar item sets, Clustering, Classification, Recommender
- PCA, SVD++, SGD
- Collaborative Filtering

End of Lesson 17 on Mahout