Lesson 14

Naïve-Bayes and Support Vector Machines (SVMs) Classifiers

Naïve-Bayes Classifier

- Parallel algorithm
- Widely Preferred Text Analytics
- Medium to Large Datasets 1M to 100M training examples which take too long time on SGD (Sequential, online incremental execution) or SVM (Sequential execution)

Naïve Bayes Classifier

- Naïve means unsophisticated, ..., a simple classifier
- Probabilistic and statistical classifier
- Based on Bayes theorem (from Bayesian statistics) with assumption of strong (Naïve) independence and maximum posteriori (MAP) hypothesis

Naïve Bayes Classifier

- A supervised learning technique, which uses non-parametric approach
- Uses assumption that features have strong independences
- "maximum a posteriori (MAP)" used to obtain the most likely class (Posteriori means at the back of something. For example, hypothesis)

Bayes Classification Assumption

- Naïve independence assumptions (conditional independence)
- The classifier computes condition probabilities for the conditional independence

2019

Document classification in Text Analytics Use the bag-of-words model

- The pre-processing of a document first provides a document with a bag of words
- The occurrence (frequency) of each word as a feature used for training a classifier
- [Refer Section 9.2.2 Example 9.3]

"Big Data Analytics ", Ch.06 L14: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

•

Bayes Classification

 Probability that a bag-of-words x belong to kth class equals the product of individual probabilities of those words.

P $(\mathbf{x}|\mathbf{c}_k) = \prod_{i=1}^{n} P(\mathbf{x}_i|\mathbf{c}_k)$, where \mathbf{x}_i is a discrete random variable (word), i = 1, 2, ..., n, when n is number of words in the bag.

Meaning of Symbols

Π is sign for the product of n terms.
 P(xi|ck) means probability of condition that state the value = x_i and of c = c_k

Training Data: (Car-Model, Annual Income, Age)
Car Models: Jaguar XJ (JXJ), Jaguar XF (JXF), Harrier (H), Zest (Z)

- Cost in Million of Rupees: JXJ = 10.1, JXF = 4.977, H = 1.269, and Zest (Z) = 0.554
- Price and AI are car price and annual income, both in Million of Rupees (Rs.)

2019

Buyers Training Data: (Car-Model, AI, Age) • (JXJ, 142, 39), (JXF, 80, 49), (H, 48, 43), (Z, 28, 46), (JXJ, 138, 44), (JXF, 82, 45), (H, 52, 40), (Z, 24, 34),

(JXJ, 140, 44), (JXF, 70, 36), (H, 58, 38),
(Z, 28, 46), (JXJ, 162, 36), (JXF, 86, 52),
(H, 43, 33), (Z, 23, 36), (JXJ, 132, 44),
(JXF, 90, 46), (H, 48, 42), (Z, 18, 26),...

Computations of Means and Variances

Car Model	Mean Annual Income (AI) in MRs.	σ _{AI} MRs.	Age Years	σ _{Age} Years
IXI	140	40	40	8
JXF	80	30	48	16
Н	50	20	42	8
Z	25	15	40	20

Probabilities

- P(JXJ) = Probability of Buying model JXJ among four models
- P(JXF), P(H) and P(Z) are probabilities of buying models JXF, H and Z, respectively

Conditional independence

 Assume that feature probabilities P (Car Model): P(JXJ), P(JXF), P(H) and P(Z) are independent given the class of annual income and age of the buyers **Conditional Probabilities**

- Conditional Probabilities p(AI|JXJ) and p(Age|JXJ) are probabilities that JXJ buyer income is AI and buyer age is Age, respectively
- p(AI|JXF) and p(Age|JXF), p(AI|H) and p(Age|H), and p(AI|Z) and p(Age|Z) are conditional probabilities for buying models JXF, H and Z, respectively

Computations of Posterior

- Posterior (JXJ) = E⁻¹{P(JXJ).p(AI|JXJ).p(Age|JXJ)
- Posterior (JXF) = E⁻¹{P(JXF).p(AI|JXF).p(Age|JXF)
- Posterior (H) = $E^{-1}{P(H).p(AI|H).p(Age|H)}$
- Posterior (JXJ) = $E^{-1}{P(Z).p(AI|Z).p(Age|Z)}$

Maximum a Posteriori (MAP) (to obtain most likely class) decision rule

- The arguments of the maxima, argmax are the points of some function at which the function values (outputs) are maximized refers to the *inputs*
- C_{MAP}= argmax {Posteriori (JXJ)}. c is c ∈ C
 a class with members (Car model, AI,

2019

- $\{P(Z).p(AI|Z).p(Age|Z)\}$
- $\{P(H).p(AI|H).p(Age|H) +$
- $\{P(JXF).p(AI|JXF).p(Age|JXF) +$
- $E = \{P(JXJ).p(AI|JXJ).p(Age|JXJ) +$

Computation of Evidence

Classification of Car Models with AI in Million **Rupees and Buyers Age and**

JXJ

JXF

Ζ

25.0 **5.0** 7.5 10.0 12.5 15.0

"Big Data Analytics", Ch.06 L14: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Age

AI

Applications

- Pattern recognition,
- image analysis,
- information retrieval
- bioinformatics

2019

Support Vector Machine (SVM) Classifier

- Sequential, Sleek and Efficient in appropriate data range
- A method in a set of related supervised learning method that uses a vector, which has in general, v elements in vdimensional space
- The vector classifies the data points.

2019

Support Vector Machine (SVM) Classifier

A data point in the space is represented by a vector. A data point represents by (x1, x2, ..., xn) in n-dimensional space. Consider two-dimensional space, with data points (x1, x2) and axes X1 and X2. Each data-point if considered as a vector element has two components, x1, and x2. (Two sets of words in text analysis

Hyperplane

- A subspace of one dimension less than its ambient space in geometry
- If a space is 3-dimensional, then its hyperplanes are the 2-dimensional planes
- However, if the space is 2-dimensional, its hyperplanes are 1-dimensional which means lines.

2019

Figure 6.18 Three hyperplanes A, B, and C for classification of data points

Classification of Zest (Z) and Jaguar XJ (JXJ) car models Using support vector hyperplanes (AI = Annual Income in Million Rs.) JXJ

Data Points in the Figure

- Data points for two car models shown in figure
- Solid line Hyperplane and two dashed line hyperplanes are shown.
- Training data-points fit a linear kernel such that deviations

Hyperplanes and Boundary planes

- The planes are iteratively chosen to maximize distances. Positive and negative support vectors can be used in features space.
- Negative SV means the features, which exclude in classification, are used by the classifier.

Training Algorithm

- Generates boundary plane defining vectors such that all or most data points are at distance from the boundary
- Mid-points of the boundaries generates 'Support Vector'
- Such that maximize boundary distances
- An objective function created such that the boundaries are at maximum distance

Nonlinear kernels

- For example, Quadratic Kernel Function: Circle, parabola, ellipse, ellipsoid equations
- Objective functions and classifier vectors generated from the quadratic function Applications: Support Vectors

Three Quadratic Kernel Functions for classifying

Positive SVs Quadratic function K1 Quadratic function K2 Quadratic function K3

Negative SVs for yellowgreen apples

Four Classes of Apples using three Support Vectors based on Quadratic Kernel

2019

We learnt:

2019

- Naïve-Bayes Classifier
- Support Vector Machines (SVMs) Classifiers

End of Lesson 14 on Naïve-Bayes and Support Vector Machines (SVMs) Classifiers

"Big Data Analytics ", Ch.06 L14: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

2019