Lesson 12

Classification, Supervised Learning, and KNN and SGD Classifiers

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Classification

- An exploratory data-mining method, which creates groups of objects of similar types or characteristics
- Refers to learning from existing categorizations and forming the groups of objects which are showing similar characteristics

Classification

- A supervised learning method
- A machine learning algorithm which decides usage of the experience, and emulates certain human decisions
- For example, categorize students who are good in theory and practical subjects both as 'very good'

Difference with respect to Classification

- Clustering finds only the similar objects
- Classification differs from clustering in the sense that classification assigns a class to each distinct set of characteristics in the collection
- For example, apples of different colours in the figure classified as of distinct variety

Four Classes of Apples

2019

"Big Data Analytics ", Ch.06 L04: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Applications

- Pattern recognition,
- image analysis,
- information retrieval
- bioinformatics

2019

Supervised Learning

 Refers to a process in which an ML algorithm use known outputs and expected target variables for the selected inputs as training datasets and takes decisions or makea predictions for new inputs

Input Vectors for Classification

- Set of Input Column vectors *§* of datapoints consists of elements in the metric and non-metric space
- Set of Input predictor variables **P** along with the target output vectors **ET** used as input to a Classifier algorithm
- Training dataset examples & consists of both P and ET

"Big Data Analytics ", Ch.06 L10: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Classifier

 Needs training, which means learning from existing categorizations and then forming groups of objects showing similar characteristics.

Training

• A learning process which uses training dataset \Im and generates a model program, M

Training Dataset J

- Means a subset & of an exemplary dataset which includes training variables
- *S* includes value of the target variables and predictors also

2019

Training Algorithm

- Generates a 'Model', M
- M is a program which gives the output vectors for taking the decision of the class to which the input vector belongs
- Remember, a set of datapoints can be represented by a set of vectors in v-dimensional space.

Figure 6.15 Steps during the learning phase of a Classifier

2019

Steps during the learning phase of a classifier

- Training algorithm needs (i) training dataset T, which includes predictor variables P, as well as target variables [outputs ET (estimated target variables)] both as the inputs
- Generates a model M from inputs, **P** and **ET**

Steps during the learning phase of a classifier

- M internally used test or evaluation datasets
- Inputs to a copy M' are Predictor Variable Only
- ET and M' are Inputs to Decider Program **D**

Figure 6.16 Classification on the basis of performances of the student groups

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

2019

K-NN Application Areas

- Regression
- Similar items search (k is 1 for nearest neighbour, 2 for next to nearest and 3 for next to next nearest)
- Classification

K-NN Classifierr

- Training dataset consists of k-closest examples in feature space
- Feature space means, space with categorization variables (non-metric variables)

2019

K-NN Learning

 Learning based on instances, and thus also works lazily because instance close to the input vector for test or prediction may take time to occur in the training dataset

K-NN Object Classification Criterion

- An object classification criteria is majority vote
- The lazy algorithm, learns and start giving accurate results after thorough learning

Stochastic Gradient Descent (SGD) Algorithms

- such as logistic regression are sequential, incremental efficient (fast) and used when computational needs are of small (< 0.1 M) to medium (< 10 M) dataset.
- Predictor variables can be metric and no-metric, any of the four types.

Stochastic Variable, Process or system

- Means a variable, function, process or system connected with random probability, chance or randomness
- For example, the experimental observations exhibiting stochastic deviations with respected to the expected values from regression line.

Stochastic Variable, Process or system

- Assume variables x₁, x₂, ..., x_v in vdimensional space.
- For 3-dimension metric space, x1 is x, x2 is y and x3 is z.

• Assume that objective is to find the coefficients, parameters or weights in a function for which the error, deviation or variance are minimum, or to find those which best classify the output data-points, responses or observations when in n observations.

- Assume n observations are for a dependent variable, and they are the function Q of (c₀, c1) in case of straight line, (c₀, c1, c2, ..., m) in case of polynomial, or (λ, x) in Kernel function [Equations (6.6a to c)]
- Let Q is sum over n values of Q_i from i = 1 to n: Q (c) = $\sum Q_i$ (c)

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

• Objective function Q $(c_1, c_2, ..., c_m) = \sum$ Q_i $(c_0, c_1, c_2, ..., c_m)$ for optimizing for best values of c₀, c1, c2, ..., m from i = 1 to n observations.

•
$$\mathbf{Q}(\mathbf{c}) = \sum_{i=1}^{n} \mathbf{Q}_i(\mathbf{c})$$

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India Examples of Objective Function for minimizing, converging or optimizing

• Minimize chi-square = $\chi^2 = e_i^2 = \sum (y_i - y'_i)^2$ [Refer Ch.06 L06 PPTs.] for best fitting lowest deviation in values in observation for the **c** (coefficients in regression) or (λ , \overline{x}) Kernel functions) Examples of Objective Function for minimizing, converging or optimizing

• Least square function is an example of objective function. For straight line, e_i^2 $= \sum \{(y_j - (c0 + c_l x_j))\}^2$

Stochastic Gradient

- Gradient equals to change in a function Q(c₁, c₂, ... c_v) value with respect to a very small change in a parameter (coefficient or weight) value, say c₁, c₂, ... c_v (Partial Derivatives)
- Objective Function is a summation, to be optimized (minimized) for c₁, c₂, ..., cv) for values x₁, x₂,... x_n

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Stochastic Gradient Descent Method

- For example, in a function Q(x1, x2, ..., xv), gradient of Q with respect to xi equals partial differentiations, ∂Q/∂ci, where i = 1, 2, ..., v.
- Y=c0+c1.x₁ +cv.x_v, where c are the coefficients (weights of x1, ,2, x3, ...) for computing Y

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Stochastic Gradient Descent Method

- For example, in a function Q(x1, x2, ..., xv), gradient of Q with respect to xi equals partial differentiations, ∂Q/∂ci, where i = 1, 2, ..., v.
- Y=c0+c1.x1 +cv.xv, where c are the coefficients (weights of x1, ,2, x3, ...) for computing Y
- Gradient approach 0 at maxima or

2019 • "Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, mini Rikamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

- $\mathbf{Q}(\mathbf{c}) = \Sigma \mathbf{Q}_i(\mathbf{c})$ (Sum is for i = 0, 1, 2, ..., v) in v-dimensional space
- $\mathbf{Q}(\mathbf{c}) = \mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{x}_1 + \dots \cdot \mathbf{c}_v \cdot \mathbf{x}_v$
- For = 1 to n {c_i = c_i −α ∇ Q_i(c)}, where α is learning rate (rate with which the Q(c) approaches towards minimum
- Gradient ∇ Q_i(c) approach 0 at maxima or minima

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Least Square Fit

 Recall Section 6.3.3. It explained how the best fit could be reached by using the 'least squares criterion',

SGD classifier

 Trains and learns the computation of objective function parameter values and classifies based on predictor values for each class

Quadratic Kernel Function

- Square of the Linear (**x**^T.**y**)
- Dot Denotes Dot Product of Vectors
- [T denotes the transpose of a column vector]
- Transpose of matrix A the *i*-th row, *j*-th column element of A^T is the *j*-th row, *i*-th column element of matrix A

Quadratic Kernel Functions

- $K(x, y) = (x^T * y + c)^2$
- $K(x_i, x_j) = Sqrt (||x_i x_j||^2 + c^2)$ [Multi-Quadric]
- $K(x, y) = (x^T.y)^2 \text{ or } (1 + x^T.y)^2$
- Refer

2019

[https://www.cs.utah.edu/~piyush/teach ing/15-9-print.pdf for further reading.]

"Big Data Analytics ", Ch.06 L04: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Quadratic Kernel Function

- For example, circle, parabola, ellipse, ellipsoid equations
- Objective functions and classifier vectors generated from the quadratic function Applications: Support Vectors

Three Quadratic Kernel Functions for classifying

Quadratic function K1 Quadratic function K2

Quadratic function K3

Four Classes of Apples using three objective functions based on K

2019

"Big Data Analytics ", Ch.06 L04: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Logistic Regression Trained via SGD

- Uses predictor variables and linear weights, they pass through a soft-limit function that limits output between 0 and 1;
- Uses hash values for the features, which means training algorithm assigns each feature a hash value, which is used for indexing, search and predictor variable.

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

Summary

We learnt:

- Classification as process of assigning a class to each distinct set of characteristics in the collection
- Training datasets, Predictor Vector, Expected Target Vectors
- Model Program M and Decider Program

Summary

We learnt:

- K-Means and K-Medoids
- Stochastic Gradient Descent Method
- Objective Functions for n observations
- Use of Regression and Quadratic Functions
- Logistic Regression

"Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India End of Lesson 12 on Classification, Supervised learning, and KNN and SGD Classifiers

> "Big Data Analytics ", Ch.06 L12: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

2019