#### Lesson 6

### **Regression, Multiple Regression Objective-function And Prediction**

"Big Data Analytics ", Ch.06 L06: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

### **Correlation and Regression**

- Analyses of Correlation and regression based on multivariate distribution
- A multivariate distribution— a distribution in multiple variables
- Finds the relationships between a dependent variable and one or more independent, outcome, predictor or response variables



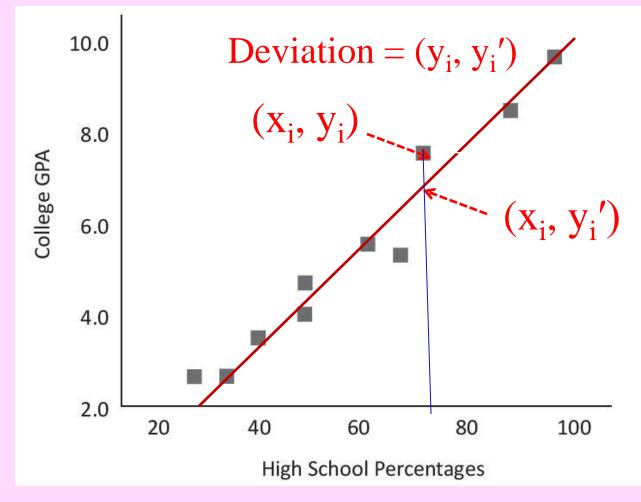
"Big Data Analytics ", Ch.06 L06: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

## **Regression analysis**

- Requires many techniques for modeling and performing the analysis using multiple variables
- Facilitates prediction of future values of dependent variables

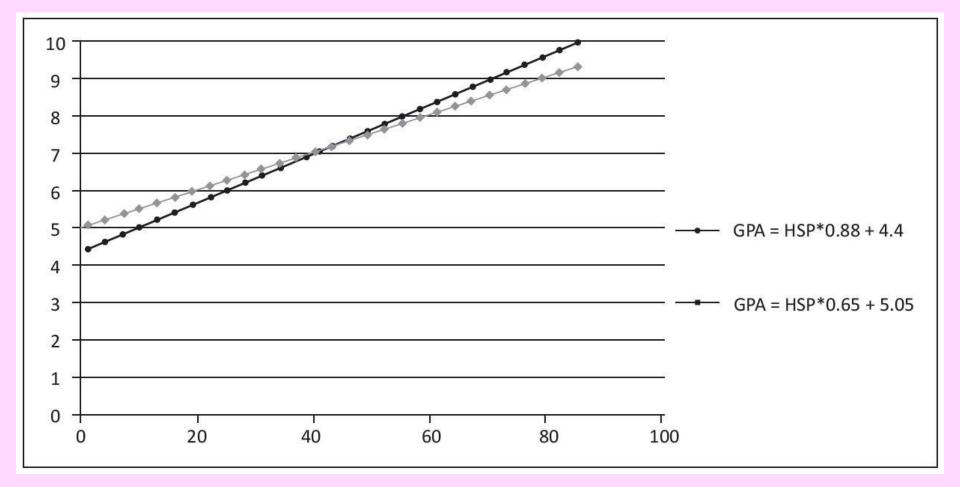
### Linear and Nonlinear regression

- y = a0 + a1.x (linear)
- y = a0 + a1.x + a2.x2 + a3.x3 ....., (nonlinear)


# Purpose of Linear Regression Analysis

- Come up with an equation of a line that fits through a cluster of points with minimal amount of deviation from the line
- The best-fitting line, called the *regression line*.

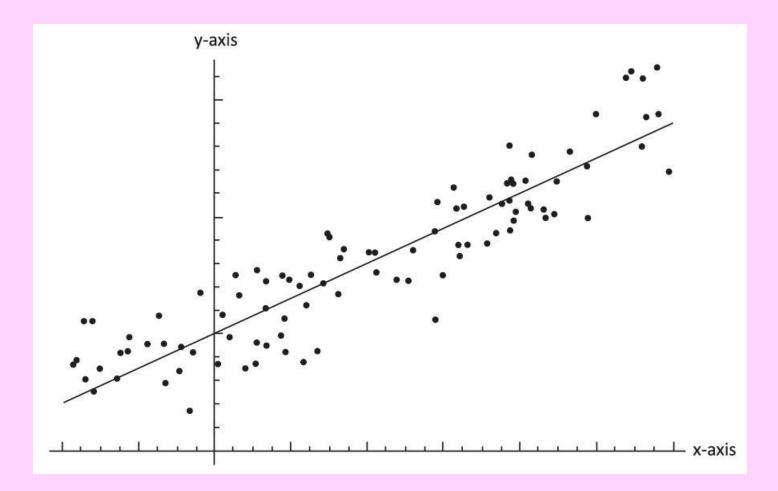
## **Linear Regression Deviations**


- Deviation of the points from the line is called an 'error'
- Once this regression equation (line) is obtained, the dependent variable can be predicted from independent predictor variable

# Figure 6.5 Linear regression relationship between college GPA and percentage of high school marks

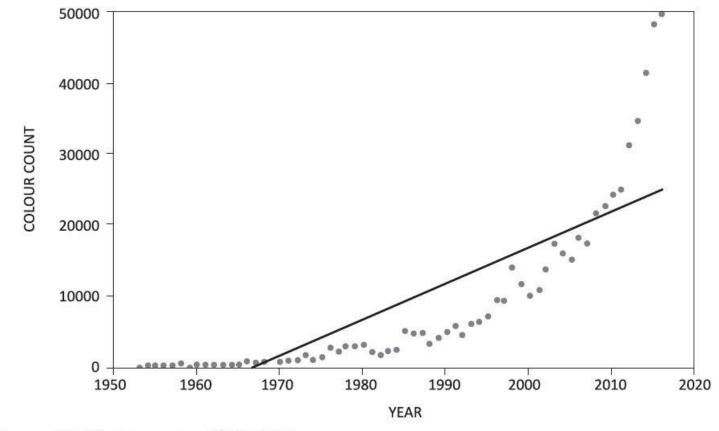


"Big Data Analytics ", Ch.06 L06: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India


# Figure 6.6 Linear regression relationship with two regression lines with different coefficient in regression equation



2019


"Big Data Analytics ", Ch.06 L06: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

#### Figure 10.9 Example of linear regression



"Big Data Analytics ", Ch.06 L06: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

#### **Figure 10.10 Linear regression output**



Slope = 508.66, Intercept = -1000662.09Colour Count predicted in 2020 = 26835

> "Big Data Analytics ", Ch.06 L06: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

## **Prediction Error**

- Prediction error  $e_i = y_i y'_i =$
- y<sub>i</sub> denotes response variable from experimental data-points
- *y*'<sub>*i*</sub> *predicted* response from the equation

Least Square Fitting Function (Chi-Square Function)

- Least square criterion is that find sum of square of deviations for i = 1, 2, ..., n for n data-points in scatter plot
- Best fit is one, which 'minimises the sum of the squared prediction errors when the equation of the best fitting line is:  $y'_i = b0 + b1.x_i$  and i = 1, 2, ... n

### **Minimizing Chi-Square Function**

- minimise chi-square =  $\chi^2 = e_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_i y'_i)^2$
- Least square function is an example of objective function

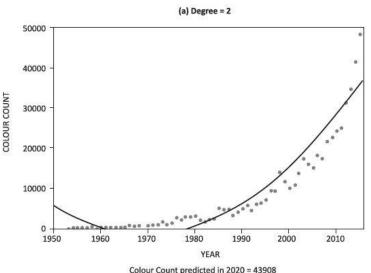
# Objective

 An objective function can be the result of an attempt to express a goal in mathematical terms for use in decision analysis, operations research or optimization studies

# **Objective Function**

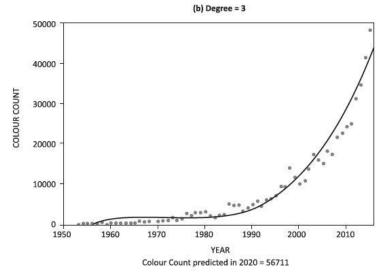
 Refers to a function, used for some targeted application, like fitting the regression equation with the observations

# Objective


- To optimize an equation coefficients, weights or parameters with given certain constraints, and objective
- Objective may be to minimise or maximize or other action from a function

# Objective

• For example, the coefficients  $b_0$ ,  $b_1$ , ... in regression equation, which minimise the prediction error (deviation)  $e_i^2 = \sum (y_i - y'_i)^2$ 

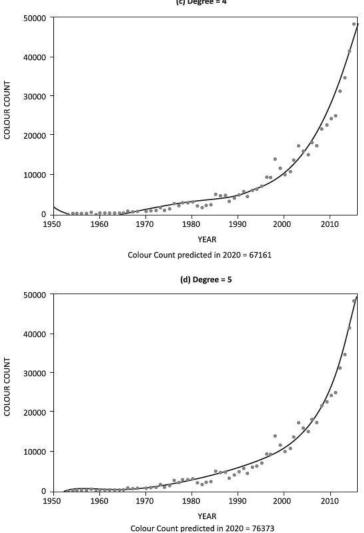

#### Figure 10.11: Fitting a Polynomial Regression Function (Section 10.6.4.2)

Two degree Polynomial regression



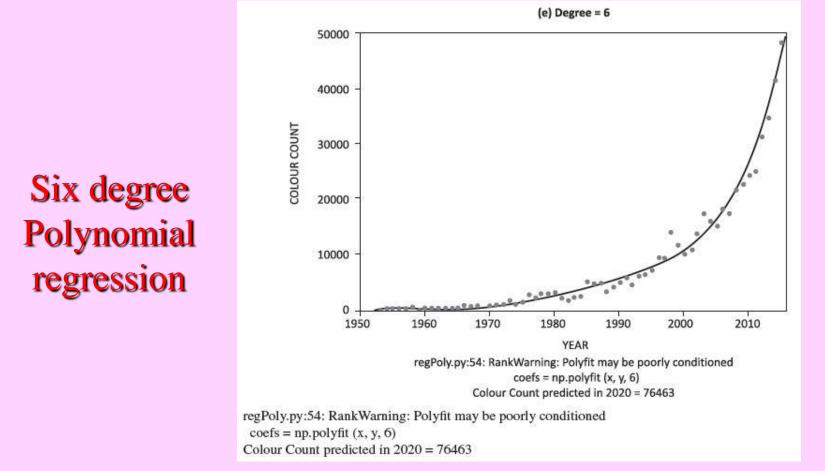
Count predicted in 2020 = 4:

Three degree Polynomial regression




"Big Data Analytics ", Ch.06 L02: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

#### Figure 10.12: Fitting a Polynomial Regression Function (Section 10.6.4.2)


Four degree Polynomial regression

Five degree Polynomial regression



"Big Data Analytics ", Ch.06 L02: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

# Figure 10.13: Fitting a Polynomial Regression Function (Section 10.6.4.2)



"Big Data Analytics ", Ch.06 L02: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

# **Multiple Regression**

- A criterion variable can be predicted from one predictor variable in simple linear regression.
- The criterion can be predicted by two or more variables in case of *multiple regressions*.

#### Multiple regression and coefficients

- $y = a + c_1 x_1 + c_2 x_2 + ... + c_n x_n$ , (equation 6.19)
- Independant variable  $x_1, x_2, \ldots x_n$ , on which value of y depends
- Coefficientes c<sub>1</sub>, c<sub>2</sub>, ... + c<sub>n</sub> are also called weights of x<sub>1</sub>, x<sub>2</sub>, ... x<sub>n</sub>

### Multiple regressions uses

- When two or more independent factors are involved
- To make short- to mid-term predictions to assess which factors to include and which to exclude

## **Statistical Significance**

 Statistical significance means that the observer can be confident that the findings are real, and not just a coincidence, for the given data..

# **Multiple Regression**

 Computes a coefficient (weight) for each independent variable, and its statistical significance, to estimate the effect of each independent variable on the dependent variable

# Predictions using Regression Analysis

 Using linear analysis on sales data with monthly sales, a company could forecast sales for future months

# **Predictions using Regression Analysis**

 The dependent variable prediction can be made by accurate selection of independent variables (predictor variables) to estimate a dependent variable

# Steps in Predictions using Regression Analysis

 Step 1: Estimation— hypothesize a function and estimate the parameters of the function from the data collected on the dependent variable

# Steps in Predictions using Regression Analysis

 Step 2: Prediction — Input the independent variable values to the parameterized function and generate the predictions for the dependent variable



### We learnt:

- Regression—Linear, Nonlinear
- Least Square Error estimation
- Chi-square
- Objective Function
- Multiple regression
- Predictions

"Big Data Analytics ", Ch.06 L06: Machine Learning ...for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India

End of Lesson 6 on **Regression**, Multiple regression **Objective-function and prediction** 

> "Big Data Analytics", Ch.06 L06: Machine Learning ... for... analytics, Raj Kamal and Preeti Saxena, © McGraw-Hill Higher Edu. India